Лампа 6Ж3П лучевой тетрод

Описание прибора

Л3-3 предназначен для измерения основных электрических параметров электронных ламп, а также для снятия статических характеристик. Прибор позволяет производить измерения параметров приемно-усилительных и маломощных генераторных (с мощностью рассеивания на аноде до 25 Вт) ламп, кенотронов, диодов и стабилитронов.

Измеритель может быть использован на складах и базах потребителей электронных ламп, в ремонтных мастерских, лабораториях, а также на предприятиях, разрабатывающих и выпускающих радиотехническую аппаратуру.

Прибор может эксплуатироваться в климатических условиях: при температуре окружающего воздуха от —10 до + 40 °С и относительной влажности воздуха 65 ± 15 %.

Примечание. Если измеритель вносится в помещение с температурой окружающего воздуха выше 0 °С с улицы или из другого помещения, где температура воздуха ниже 0 °С, то измеритель перед эксплуатацией необходимо выдержать в этом помещении не менее 2 суток.

Технические характеристики

Прибор измеряет у радиоламп следующие параметры:

  • У диодов:
  • У триодов, двойных триодов, тетродов, пентодов и комбинированных ламп:
    • ток анода;
    • ток второй сетки;
    • обратный ток первой сетки;
    • крутизну характеристики анодного тока:
    • крутизну характеристики гетеродинной части частотно-преобразовательных ламп;
    • анодный ток в начале характеристики или запирающее напряжение сетки;
  • У газоразрядных стабилитронов напряжения:
    • потенциал зажигания;
    • напряжение стабилизации;
    • изменение напряжения стабилизации при изменении силы тока;
  • У кенотронов:
  • А так же у всех типов ламп:
    • ток утечки между катодом и подогревателем при напряжениях 100 и 250 В (плюс на катоде, минус на подогревателе);
    • ток утечки между электродами (катодом и сеткой первой, сеткой первой и сеткой второй) при напряжении 100 и 250 В.
  • Прибор обеспечивает подачу на электроды испытываемых ламп следующих напряжений:
    • на накал — от 1 до 14 В при токе 1,2 А;
    • на сетку первую — 0, от —0,5 до 65 В и фиксированное напряжение —100 В;
    • на сетку 2 — от 10 до 300 В при токе до 15 мА;
    • на анод — от 5 до 300 В при токе до 100 мА;
    • переменных напряжений для испытываемых кенотронов — 2х350, 2х400, 2×500 В.
  • Шкалы электроизмерительного прибора имеют следующие номинальные значения:
    • для измерения напряжения накала — 3; 7,5; 15 В,
    • для измерения напряжения на сетке 1 — 1,5; 3; 7,5; 15; 30; 75 В;
    • для измерения напряжения на сетке 2 — 75; 150; 300 В;
    • для измерения напряжения на аноде — 15; 75; 150; 300 В.
    • для измерения тока анода и эмиссии диодов — 1,5; 3; 7,5; 15; 30; 75; 150 мА;
    • для измерения тока сетки 2 — 0,75; 1,5; 3; 7,5; 15 мА;
    • для измерения обратного тока сетки 1 и анодного тока в начале характеристики — 0,75; 3; 15; 30; 150 мкА;
    • для измерения выпрямленного тока — 150; 300 мА;
    • для измерения крутизны характеристики — 0,75; 1,5; 3; 7,5; 15; 30; 75 мА/В.
  • Для подачи автоматического смещения на испытываемые лампы в приборе имеются следующие катодные сопротивления: 30, 50, 68, 75, 80, 100, 120, 150, 160, 200, 220, 400, 500, 2х600 Ом.
  • Основные погрешности измерительных приборов в нормальных условиях эксплуатации не превышают следующих значений:
    • основная погрешность вольтметров для измерения напряжений накала, анода, сетки 1, сетки 2 и миллиамперметров — тока анода, сетки 2, а также выпрямленного тока испытываемых кенотронов — ±1,5 % от верхнего предела измерения каждой из шкал;
    • основная погрешность лампового микроамперметра для измерения обратного тока сетки 1 и тока в начале характеристики — ±2,5 % от верхнего предела измерения каждой из шкал;
    • основная погрешность лампового вольтметра для измерения крутизны характеристики — ±2,5 % от верхнего предела измерения каждой из шкал.
  • Нормальные условия эксплуатации прибора:
    • температура окружающего воздуха +20 ± 5 °С;
    • относительная влажность 65 ± 15 %;
    • атмосферное давление 750 ± 30 мм рт. ст.;
    • напряжение питания сети 50 Гц 220 В ± 2 %.
  • Рабочие условия эксплуатации прибора:
    • интервал температур от —10° до +40 °С;
    • относительная влажность до 80 % при температуре +20 °С;
    • частота 50 Гц ± 1 %; напряжение 220 В ± 10 %;
    • частота 400 Гц +7/-3; напряжение 115 В ± 5 %;

Измеритель рассчитан на непрерывную 8-часовую работу, включая время самопрогрева, при проверке различных типов ламп с анодным током до 100 мА. Допускается 2-часовая работа измерителя при непрерывной проверке ламп одного и того же типа с анодным током от 100 до 150 мА. Время самопрогрева равно 30 мин.

Питание прибора осуществляется от сети переменного тока частотой 50 Гц ± 1 % с номинальными значениями напряжений 127 и 220 В, а также от сети переменного тока частотой 400 Гц с номинальным напряжением 115 В.

Прибор нормально работает при изменении напряжения питания от сети 220 В, 127 В, 50 Гц на ±10 % и 115 В 400 Гц на ±5 % при установке переключателем «Сеть» стрелки индикаторного прибора на красную риску шкалы при нажатой кнопке «Сеть». Стрелка прибора устанавливается на красную риску с точностью ± 1 малое деление.

Максимальная мощность, потребляемая измерителем, при номинальном напряжении питающей сети, не превышает 300 Вт при проверке всех типов ламп, кроме лампы 5Ц3С, при проверке лампы 5Ц3С — 450 Вт.

Среднее время безотказной работы измерителя не менее 1250 часов.

Габаритные размеры прибора 515х320х230 мм.

Масса прибора не превышает 22 кг.

Двухтактный ламповый усилитель на 6П3С и 6Н9С

Собственно вирус лампового звука внедрился в меня посредством небольшой статьи, размещённой на этом ресурсе. Вот она, тут находится. Спасибо автору Началось изучение теории по данному вопросу, причём не эзотерическая ересь из интернетов, а книги Цыкина, Гершунского, Войшвилло и тому подобное. Радиолюбительские журналы 60-х годов тоже интересные, многие современные ноу-хау встречаю именно в них.

Сделать усилитель своими руками не получилось, хоть и покупал лампы, дроссели, трансформаторы, потому как отец приобрёл у какого-то радиолюбителя брошенный на полпути усилитель, который так и не заиграл… Пришлось изменить схему фазоинвертора и уменьшить номиналы резисторов (до справочных) в цепи управляющей сетки выходных ламп на землю, так как эти лампы со временем запирались и ток через них не шёл, сводя коэффициент усиления до нуля.

Окончательный вариант схемы привожу ниже. Регулятор громкости исключён за ненадобностью. В принципе, схема простая и в особых пояснениях не нуждается. Электролит в катоде входной лампы специально выбран с небольшой ёмкостью, дабы снизить усиление на низких частотах (не люблю я их) за счёт обратной связи по току. Пила в катодной (и анодной цепи) была сглажена установкой дросселя после диодного моста. Дольше всего боролся с самовозбуждением на частотах от 100 kHz и выше. Резисторы 4.7k перед сеткой выходной лампы и керамика, шунтирующая электролиты в анодном питании оттуда. Так же и сетку пробовал заземлять через ёмкость, и что-то вроде RC-фильтра туда же ставил — всё было бестолку. До тех пор, пока сигнальный шнур от компьютера к усилку не выдернул. Весь ультразвуковой мусор исчез, поскольку шёл со звуковой карты. Будет мне наука на будущее, что бы с ветряными мельницами не сражался.

Фон переменного тока снизился ниже порога слышимости (если не прикладывать голову к колонке) после того, как установил среднюю точку от накала входной лампы на землю, через пару резисторов на 4.7k

Честно говоря, захватившая меня идея заиметь и услышать ламповый звук, вызывала кое-какие сомнения или опасения. Волновал один вопрос, а именно — стоит ли игра свеч? Услышу ли я какую-либо разницу? Если почитать интернеты, то складывается такое впечатление, что услышу всенепременно. Но ведь там же можно почитать и про то, как у людей басы отлипают от динамиков после обматывания межблочного кабеля тремя слоями изоленты. Или же описывают чудесные изменения в звуке от замены простого акустического кабеля на волшебный по 300$ за метр (с обязательной прослушкой правильного направления подключения и с предварительным прогревом кабеля правильной музыкой, что бы электроны нарезали хорошие траектории в проводнике) и прочую мутотень.

Однако то, что я услышал, полностью оправдало и даже превзошло все мои ожидания. Звук приобрёл детальность. Акустическая гитара стала похожа на акустическую гитару, завывания ветра превратилось в завывание ветра, а чирикающие птички на заднем плане стали чирикающими птичками, а не непонятным шумом, принимаемом мною за искажения. Хотя не знаю, как можно описать это словами — это нужно услышать. Прослушав композицию с лампы, тут же повторил её усилителем Романтика 50У-220С и отдельно на Microlab Solo-3 Mk2. Звук стал мутным. Такое чувство, что высокие частоты выкрутили вниз темброблоком, однако последующий подъём высоких частот ситуацию не исправляет — только добавляется всяких щелчков, свиста и прочего шума из высокочастотных динамиков.

Я не буду утверждать, что транзистор фигня, убивает душу и т.д. и т.п. У меня не идеальная эталонная система для сравнения, думаю, что найдётся транзисторный или интегральный усилитель с таким же детализированным звуком (цена вопроса только будет совсем другая). Тем более, что прослушивал музыку я не на Hi-End колонках, а с СОЮЗ 50АС-012. Да и вообще, говорить про убийство звука транзистором абсурдно. Источник сигнала у меня цифровой, весь тракт до одного вольта — полупроводниковый. Да чего уж там мелочиться, уже на студии, в процессе записи музыки, сигнал мог пройти через 300-400 транзисторов (информация из какой-то статьи Лихницкого). Если звук умер уже неоднократно, то с какого перепугу он должен воскреснуть в лампе?

Ладно, отставлю в сторону болтовню и размышления. Добавлю ка ещё пару фотографий.

Обратная связь со мной возможна здесь, в моём журнале, по тегу — звук — записи данной направленности.

Перечень электронных ламп, проверяемых на измерителе Л3-3

  1. В режиме технических условий на лампу
    1. Диоды: 2Д3Б, 2Х1Л, 6Х2П, 12Х3С.
    2. Триоды: 2С3А, 2С14Б, 3С6Б-В, 3С7Б-В, 6С1Ж, 6С1П, 6С2Б, 6С2Б-В, 6С2П, 6С2С, 6С3П, 6С3П-ДР, 6С3П-ЕВ, 6С4П, 6С4П-ДР, 6С5Д, 6С6Б, 6С6Б-В, 6С7Б, 6С7Б-В, 6С8С, 6С9Д, 6С15П, 6С15П-Е, 6С26Б-К, 6С27Б-К, 6С31Б, 6С34А, 6С34А-В, 6С45П-Е, 12С3С.
    3. Двойные триоды: 1Н3С, 6Н1П, 6Н1П-ВИ, 6Н1П-ЕВ, 6Н2П, 6Н2П-ЕВ, 6Н2П-ЕР, 6Н3П, 6Н3П-ДР, 6Н3П-Е, 6Н3П-ЕВ, 6Н5П, 6Н6П, 6Н6П-И, 6Н6П-ИР, 6Н7С, 6Н8С, 6Н9С, 6Н12С, 6Н15П, 6Н26П, 6Н27П.
    4. Выходные пентоды и лучевые тетроды: 1П2Б, 1П4Б, 1П22Б, 1П22Б-В, 1П24Б, 1П24Б-В, 2П1П, 2П5Б, 2П29Л, 4П1Л, 6П1П, 6П1П-В, 6П1П-ЕВ, 6П3С, 6П3С-Е, 6П6С, 6П7С, 6П9, 6П14П, 6П14П-В, 6П14П-ЕВ, 6П14П-ЕР, 6П15П, 6П15П-В, 6П15П-ЕВ, 6П15П-ЕР, 6П23П, 6П25Б, 6П25Б-В, 6П35Г-В, 6Р2П, 6Э5П, 6Э5П-И, 6Э6П-Е, 6Э12Н-В, 6Э13Н, 6Э14Н, 10П12С, 13П1С, 1515.
    5. Пентоды с короткой характеристикой: 1Ж17Б, 1Ж18Б, 1Ж24Б, 1Ж37Б, 2Ж27Л, 4Ж1Л, 6Ж1Б, 6Ж1Б-В, 6Ж1Ж, 6Ж1П, 6Ж1П-ЕВ, 6Ж1П-ЕР, 6Ж2Б, 6Ж2Б-В, 6Ж2П, 6Ж2П-В, 6Ж2П-ЕВ, 6Ж3, 6Ж3П, 6Ж3П-Е, 6Ж4, 6Ж4П, 6Ж5Б, 6Ж5Б-В, 6Ж5П, 6Ж7, 6Ж8, 6Ж9Г-В, 6Ж9П, 6Ж9П-Е, 6Ж10Б, 6Ж10Б-В, 6Ж10П, 6Ж11П, 6Ж11П-Е, 6Ж13Л, 6Ж23П, 6Ж23П-Е, 6Ж32Б, 6Ж32П, 6Ж33А, 6Ж33А-В, 6Ж35Б, 6Ж35Б-В, 6Ж45Б-В, 6Ж46Б-В, 10Ж1Л, 10Ж3Л, 12Ж1Л, 12Ж3Л, 12Ж8.
    6. Пентоды с удлиненной характеристикой: 1К2П, 6К1Б, 6К1Б-В, 6К1Ж, 6К1П, 6К3, 6К4, 6К4П, 6К6А, 6К6А-В, 6К7, 6К11Б-К, 12К4.
    7. Генераторные лампы: Г-1625, ГУ-15, ГУ-32, ГУ-50.
    8. Индикаторные лампы: 6Е1П, 6Е5С.
    9. Кенотроны: 1Ц1С, 1Ц7С, 1Ц11П, 1Ц21П, 3Ц16С, 3Ц18П, 6Ц13П.
    10. Комбинированные лампы: 1Б2П, 6Б8 (пентод), 6Г1 (триод), 6Г2 (триод): 6Г7 (триод), 6И1П (триод), 6Ф1П, 6Ф3П (триод), 6Ф4П (триод), 6Ф5П (триод), 6Ф6С, 12Г1 (триод), 12Г2 (триод).
    11. Стабилитроны: СГ1П, СГ1П-ЕВ, СГ2П, СГ2С, СГ3С, СГ4С, СГ5Б, СГ5Б-В, СГ13П, СГ15П-2, СГ16П, СГ20Г, СГ201С.
    12. Частотно-преобразовательные лампы: 6А2П, 6А7, 6Л7.
  2. Не в режиме технических условий на лампу
    1. Не в режиме технических условий из-за величины переменного напряжения накала, контролируемого косвенным методом —
      1. диод 4Ц14С;
      2. триоды: 2С4С, 6С4С;
      3. двойные триоды: 6Н5С, 6Н13С;
      4. выходные пентоды: 6П13С, 6П31С;
      5. генераторные лампы: ГИ-30, ГУ-29;
      6. кенотроны: 2Ц2С, 4Ц6С.
    2. Не в режиме технических условий из-за величины переменных напряжений на анодах, контролируемых косвенным методом, и из-за величины емкости, шунтирующей нагрузочное сопротивление кенотрона —
      1. кенотроны: 6Ц4П, 6Ц4П-В, 6Ц5С.
    3. Не в режиме технических условий из-за величины переменных напряжений накала и анода, контролируемых косвенным методом —
      1. кенотроны: 5Ц3С, 5Ц4М, 5Ц4С.
    4. Не в режиме технических условий из-за величины сопротивления в цепи автоматического смещения —
      1. двойные триоды: 6Н3П-И, 6Н14П, 6Н16Б, 6Н16Б-В, 6Н17Б, 6Н17Б-В, 6Н18Б, 6Н18Б-В, 6Н21Б, 6Н23П-ЕВ;
      2. триоды: 6С19П, 6С19П-В, 6С19П-ВР, 6С29Б-В, 6С32Б, 6С35А, 6С35А-В, 6С51Н-В, 6С52Н-В;
      3. пентоды: 6Ж9Г, 6Ж38П, 6П18П, 6Ф5П (пентод).
    5. Не в режиме технических условий из-за величины напряжения на сетке четвертой —
      1. частотно-преобразовательная лампа 6А8.
    6. Не в режиме технических условий из-за величины балластного сопротивления в цепи анода —
      1. стабилитрон СГ202Б.
    7. Не в режиме технических условий из-за величины напряжения на сетке первой —
      1. частотно-преобразовательные лампы: 1А1П, 1А2П.
    8. Не в режиме технических условий из-за величины напряжения на сетке третьей —
      1. гептод 6И1П.
    9. Изменена методика проверки параметров ламп из-за отсутствия в технических условиях их номинальных и максимальных значений —
      1. у диодов: 2Д1С, 4Д5С, 6Д3Д, 6Д4Ж, 6Д6А, 6Д6А-В;
      2. у двойных диодов: 6Х6С, 6Х7Б;
      3. у кенотрона 5Ц12П;
      4. у диодной части ламп: 6Б8, 6Г1, 6Г2, 6Г7, 12Г1, 12Г2.

Подробнее о ламповых усилителях и их практические примеры

Здесь будет статья с картинками. Можно показать упрощенный вариант схемотехники усилителя на лампах 6Р3С. Эта лампочка нигде в оглавлении сайта не отмечена, а усилитель на ней сделан. В качестве донора для построения лампового усилителя на 6Р3С можно использовать трансляционный услитель 100У-101. Оттуда берут только выходной трансформатор. Можно попытаться применить силовик. Однако здесь нужно быть внимательным. Вначале следует тщательно оценить рассеяние, измерив ток холостого хода. Если ток не более 50 мА, то смело применяйте. Если ток конский, то просто продайте это железо новичку. Ему пока не важен уровень фона в усилителестроении.

Панельки для 6Р3С лучше использовать керамические (подходят от ГУ-50), поскольку нагревается лампа сильно. Карболит может подгорать и противно вонять. Остатки трансляционного усилителя 100У можно спокойно отнести на помойку. Лампа 6Р3С ничего выдающегося собой не представляет. Более того, баллон маловат для заявленной мощности рассеяния по аноду. Анодные выводы расположеня сверху баллона, это не очень удобно. Зато в каждом баллоне по два лучевых тетрода, схожих по характеристикам с 6П3С. Симметрией половинки лампы не отличаются, поэтому лучше тетроды одного баллона запараллелить, поставивив со всех сторон выравнивающие резисторы. Выходной трансформатор будет работать в облегченном режиме поскольку он рассчитан на параллельную работу трёх половинок в оригинальной схеме 100У. Если обеспечить принудительное воздушное охлаждение, то подгрузить лампочки можно побольше. Пример раскроя железного листа для изготовления корпуса показан ниже.

Пример схемы усилителя показан ниже. В отличие от усилителя 100У обе половинки лампы использованы в параллельном включении.

Схема типовая, раскачки вполне достаточно. А вот картинку схемы выходного трансформатора показать стоит. Это типовой трансформатор от лампового усилителя 100У. Выглядит этот усь как квадратный яшик, нередко голбоватого цвета, с одним индикатором на лицевйо панели. Смысл этого усилителя в его размерах. Назначение — трансляционный. Следовательно выходной трансформатор у него специфический, для работы на длинную линию. И нужно трансформатор переделывать, простым путём, обыкновенной перепайкой.

Перед применением его нужно внимательно осмотреть, убрать лишние соединиения, и провести ревизию. Усилители 100У-101 старые, часто ржавые. Обязательно выполняют проверку обмоток мегометром. Если откровенного брака нету, то дальше трансформатор пропитывают в парафине. Основательно нужно пропитывать. Полчаса в парафиновой ванне при 80-90- градусах. На печке можно греть, на даче, чтобы вонь парафиновую не нюхать. У меня есть более продвинутые чертежи для схемы выходного трансформатора, но показывать их пока не буду. Достаточно для понимания и этих стандартных картинок.

Евгений Бортник, Красноярск, Россия, март 2013

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: