Какие характеристики учитывают при выборе
Установка конденсатора должна быть сделана строго по соответствующим правилам. Его выбор производится на основе следующей информации:
- Тип двигателя (однофазный или трёхфазный) и способ соединения обмоток (треугольником или звездой).
- Используемая сеть электропитания. В бытовых условиях чаще всего можно встретить 220 в. Также используется напряжение питания 380 в при условии, что сеть трёхфазная. Последний вариант часто применяется в промышленных условиях.
- Мощность двигателя.
- Коэффициент мощности в большинстве случаев равен 0,9.
- Коэффициент полезного действия электродвигателя.
Эти данные можно получить из инструкции по эксплуатации электродвигателя. Данные электросети должны быть доступны из других источников. Для вычислений можно воспользоваться онлайн калькулятором или сделать расчёты самостоятельно.
Существуют дополнительные параметры, которые также необходимо принять во внимание:
- Допустимое отклонение от расчётного значения.
- Температурный диапазон, в котором должно происходить работа детали. Для некоторых разновидностей выход за его пределы может привести к поломке.
- Уровень сопротивления используемого диэлектрика.
- Тангенс угла потерь.
Эти параметры не имеют решающего значения. Поэтому о них часто забывают. Однако, чем тщательнее подобран пусковой конденсатор, тем надёжнее и долговечнее будет происходить работа мотора.
Дополнительно нужно обратить внимание на размер и расположение детали. Обычно с увеличением ёмкости увеличиваются размеры детали
Иногда может быть выбор между марками различных производителей. Нужно выбирать те, которые выпускают более качественные и надёжные детали.
Пусковой конденсатор СВВ-60Источник aliradar.com
Конденсаторы постоянной емкости
Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.
Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.
В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.
Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.
В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.
Как влияет величина нагрузки на выбор конденсаторов
Если деталь выбрана в соответствии с приведёнными здесь расчётами, то она хорошо подойдёт при равномерной нагрузке. Примером такой ситуации является работа вентилятора.
Если нагрузка меняется, то в этом случае можно воспользоваться следующей хитростью. Например, можно рассматривать циркулярную пилу, с помощью которой распиливают доски и брёвна. В первом случае очевидно, что нагрузка меньше, а во втором — больше.
Например, если были произведены расчёты по номинальному току и получена ёмкость, равная 10 мкф, то нужно использовать такой рабочий конденсатор при распиливании досок. Для работы с брёвнами его скорее всего будет недостаточно. В этом случае при выполнении работы подключают две таких детали параллельно.
Если этого не сделать, двигатель потеряет мощность. В результате он станет перегреваться и для работы на нём потребуется делать перерывы, чтобы дать мотору остыть.
Для запуска двигателя необходимо подключить пусковой конденсаторИсточник chipmaker.ru
Принцип работы конденсатора
В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.
Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.
При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.
Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.
Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.
В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.
В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.
В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.
«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.
Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.
Где применяются конденсаторы
Работа электронных, радиотехнических и электрических устройств невозможна без конденсаторов.
В электротехнике их используют для сдвига фаз при запуске асинхронных двигателей. Без сдвига фаз трехфазный асинхронный двигатель в переменной однофазной сети не функционирует.
Конденсаторы с ёмкостью в несколько фарад — ионисторы, используются в электромобилях, как источники питания двигателя.
Для понимания, зачем нужен конденсатор, нужно знать, что 10-12% измерительных устройств работают по принципу изменения электрической ёмкости при изменении параметров внешней среды. Реакция ёмкости специальных приборов используется для:
- регистрации слабых перемещений через увеличение или уменьшение расстояния между обкладками;
- определения влажности с помощью фиксирования изменений сопротивления диэлектрика;
- измерения уровня жидкости, которая меняет ёмкость элемента при заполнении.
Трудно представить, как конструируют автоматику и релейную защиту без конденсаторов. Некоторые логики защит учитывают кратность перезаряда прибора.
Ёмкостные элементы используются в схемах устройств мобильной связи, радио и телевизионной техники. Конденсаторы применяют в:
- усилителях высоких и низких частот;
- блоках питания;
- частотных фильтрах;
- усилителях звука;
- процессорах и других микросхемах.
Легко найти ответ на вопрос, для чего нужен конденсатор, если посмотреть на электрические схемы электронных устройств.
Проверка при установке
После того, как был выбран подходящий пусковой конденсатор, его необходимо проверить. Для этого необходимо выполнить следующие действия:
- Сначала необходимо от электромотора отключить питание.
- Нужно обесточить конденсатор, поскольку на нём мог сохраниться остаточный заряд. Для этого требуется закоротить его обмотки.
- Теперь нужно снять одну из клемм и подключить прибор для измерения ёмкости.
- Щупы подключают к выводам конденсатора. После этого измерительный прибор покажет точное значение ёмкости.
При использовании мультиметра предварительно нужно установить главный переключатель в режим измерения ёмкости.
Мультиметр DT9208A
990 ₽
Посмотреть
Мультиметр DT9205A
690 ₽
Посмотреть
Мультиметр DT890B+
680 ₽
Посмотреть
Все предложения
При проведении расчётов можно использовать упрощённый вариант. Известно, что пусковой ток может превышать номинальный в 3-8 раз. Поэтому можно просто использовать ёмкость в 2-3 раза большую, чем у рабочего конденсатора. Если ёмкости для запуска недостаточно, достаточно просто взять более подходящий конденсатор.
Подробные характеристики пускового конденсатораИсточник electrikexpert.ru
Бумажный конденсатор — тип
В малогабаритной радиоэлектронной аппаратуре с печатным монтажом в качестве навесных элементов используются бумажные конденсаторы типов БМ, БМТ и К40П — 2а, а также металлобумаж-ные малогабаритные конденсаторы МБМ.
Для применения в электрических фильтрах питания радиоустройств, кроме кон-тенсаторов типа КБГ, изготовляют также фильтровые бумажные конденсаторы типа КФ не имеющие вакуум-плотной герметизации корпуса.
Конденсатор бумажный типа БГТ.| Конденсаторы бумажные типа БПП. |
БГТ ( рис. 7 — 22) составляет 0 01 — 10 мкф; емкость бумажных конденсаторов типа БПП ( рис. 7 — 23) 0 25 — 2 мкф.
В условиях повышенной температуры и влажности ( корабельные АТС, некоторые виды аппаратуры дальней связи) применяют герметизированные бумажные конденсаторы типа БГ.
В скобках указаны не предусмотренные ГОСТ 2519 — 60 номинальные емкости, с которыми изготовляются начатые производством до введения этого ГОСТа, бумажные конденсаторы типов КБ, КБГ-И, КБГ-М, КБГ-МП, КБГ-МН, металлобумажные конденсаторы МБГ-Ц, МБГ-П, МБГО и некоторых других типов.
Конденсаторный фильтр ФСК-1А ( на электропоездах ЭР1 и ЭР6) или ФСК-4А-1 ( на ЭР2) находится рядом с индуктивным фильтром и представляет собой высоковольтный герметический бумажный конденсатор типа КБГП емкостью 1 мкф на номинальное напряжение 6000 в. Конденсатор заключен в заземленный металлический ящик. Через резиновые втулки в стенках ящика пропущены силовые провода, идущие к индуктивному фильтру и под вагон — к главному разъединителю. Радиопомехи, вызванные искрением на токоприемнике, коммутацией тяговых двигателей, вспомогательных машин и аппаратов силовой цепи, фильтр снижает в 10 раз.
Для конденсаторов такого типа, на рабочее напряжение порядка нескольких киловольт при рабочей температуре 100 С и емкостях порядка микрофарад, удельный объем может быть снижен в 2 — 2 5 раза по сравнению с бумажными конденсаторами типа КБГ, имеющими рабочую температуру 70 С. Появление новых типов полярных пленок из полиэтилентерефталата, а также из поликарбоната ( новая пленка макрофоль, ФРГ), допускающих работу при 130 — 140 С, делает ПТФХЭ малоперспективным.
Использование бумажных конденсаторов на более высоких частотах затруднено сравнительно большой их паразитной индуктивностью, а также потерями в изоляции. Бумажные конденсаторы типа КБГ-И ( небольшой емкости — до 1000 пф) могут быть использованы до несколько более высоких частот. Лучшие, однако, результаты дают керамические и слюдяные конденсаторы, которые и должны применяться при работе на указанных частотах.
Зависимость угла потерь пленки диап-лекс ( бентонит от частоты при трех значениях температуры. |
КБГ — бумажные конденсаторы типа КБГ-П емкостью 0 5 — 2-икф; КСО — слюдяные спрессованные кондсн саторы КСО-13 емкостью 390 — 590 пф.
Для элементов L, С я R общего применения значения паразитных параметров обычно не превышают десятков пикофарад, а также долей миллигенри. К примеру, индуктивность бумажного конденсатора типа КБГИ емкостью 4700 пФ равна 0 01 мкГ, а собственная емкость цилиндрической катушки с плотной намоткой может достигать десятков пикофарад.
Схема подавления помех электродви гател я. |
Используют также однослойные или спиральные катушки без сердечников, выполняемые из медного провода или ленты необходимого сечения. В качестве фильтровых емкостей применяют специальные бумажные конденсаторы типа КБП, конструкция которых обеспечивает почти полное отсутствие индуктивности, герметичность и высокую добротность. Детали фильтра помещают в отдельной металлической коробке — экране.
Выбирая Rg 10е ом, определяем Cg согласно формуле ( 39), в которую необходимо подставить значение нижней границы частоты / н 100 гц. В данном случае может быть использован бумажный конденсатор типа КБГ или КБ с емкостью 1600 пф ( сопротивление изоляции которого не меньше, чем 109 ом) и рабочим напряжением порядка 300 в. Возможно также применение слюдяного конденсатора подходящих размеров ( например, КСО-12), особенно если усилитель рассчитан на широкую полосу пропускания в области высоких частот.
Что такое конденсатор
Эта деталь содержит две металлических пластины, между которыми находится слой диэлектрика. Когда к пластинам подключают напряжение, на них накапливается заряд. Электрическое находится внутри конденсатора. Оно тем сильнее, чем больший заряд находится на пластинах.
Если отсоединить напряжение от пластин, то конденсатор начинает отдавать заряд. Если используется переменный ток, то полярность напряжения будет периодически меняться. При этом на пластинах будет попеременно то положительный, то отрицательный заряд.
Ёмкость конденсатора является его важнейшей характеристикой. Она характеризует то, сколько энергии он способен пропустить через себя. Её измеряют в фарадах. Поскольку речь идёт об очень большой величине, обычно применяются приставки, которые обозначают, насколько небольшая часть используется. Чаще всего используются микрофарады (такая единицы равны 0,000001 фарады).
Процедура подключения мотораИсточник kabel-house.ru
Для каждого конденсатора существует номинальное напряжение. При нём эта деталь способна долго и надёжно работать. Обязательно указывается предельная величина наработки, которая выражается в количестве часов.
Существуют различные типы конденсаторов:
Полярные рассчитаны на использование в цепях постоянного тока
Важной особенностью является необходимость подключения в соответствии с указанной на них полярностью. Они обычно имеют небольшие размеры и относительно большую ёмкость.
Неполярные могут подключаться независимо от полярности
Их используют в цепях переменного тока. У них размеры больше, чем у полярных.
Электролитические. В них в качестве пластин используются листы фольги, а диэлектриком является тонкий слой окисла.
Для использования в качестве пускового конденсатора лучше всего подходят электролитические. Их часто используют при частоте переменного тока 50 Гц и напряжении 220-600 вольт. Конденсаторы могут иметь достаточно высокую ёмкость она может составлять сотни тысяч микрофарад.
Эти детали имеют высокую уязвимость к действию перегрева. При нарушении теплового режима они быстро выходят из строя. Неполярные конденсаторы не имеют этого недостатка, однако стоят в несколько раз дороже.
Однофазный асинхронный двигательИсточник asutpp.ru
При параллельном подключении ёмкости складываются. В том случае, когда её не хватает, для увеличения можно параллельно подключить дополнительную деталь. В этой ситуации нет необходимости заново собирать пусковую цепь.
Применяются также другие типы конденсаторов. Например, это могут быть вакуумные, жидкостные, газовые и другие. Однако в качестве пусковых конденсаторов их не используют.
Иногда тот конденсатор, который имеется в конструкции, не справляется с запуском. В таком случае его рекомендуется удалить, а вместо него поставить тот, который имеет большую ёмкость. Для маломощных двигателей допустимо, чтобы один конденсатор выполнял функции рабочего и пускового.
Использование полярных конденсаторов в условиях переменного напряжения возможно тогда, когда подключение выполнено через диод. Теперь полярность контактов изменяться не будет. Однако если диод будет неисправен, то деталь выйдет из строя.
Устройство асинхронного двигателяИсточник elektrikexpert.ru