Oscill_C1-76_plata3

Как измерить выходное сопротивление линейного выхода?

Этот параграф можно пропустить. Он рассчитан на любителей мелких подробностей.

Выходное сопротивление (выходной импеданс) линейного выхода, рассчитанного на подключение телефонов (наушников), слишком мало, чтобы оказать существенное влияние на точность измерений, которые нам предстоит выполнить в следующем параграфе.

Так для чего измерять выходной импеданс?

Так как мы будем использовать для калибровки осциллографа виртуальный низкочастотный сигнал-генератор, то его выходной импеданс будет равен выходному импедансу линейного выхода (Line Out) звуковой карты.

Убедившись в том, что выходной импеданс мал, мы можем предотвратить грубые ошибки при измерении входного импеданса. Хотя, даже при самом плохом стечении обстоятельств эта ошибка вряд ли превысит 3… 5%. Откровенно говоря, это даже меньше возможной ошибки измерений. Но, известно, что ошибки имеют привычку «набегать».

При использовании генератора для ремонта и настройки аудиотехники тоже желательно знать его внутренне сопротивление. Это может пригодиться, например, при измерении ESR (Equivalent Series Resistance) эквивалентного последовательного сопротивления или попросту реактивного сопротивления конденсаторов.

Мне, благодаря этому измерению, удалось выявить самый низкоомный выход в моей аудиокарте.

Если у аудиокарты всего одно выходное гнездо, то тогда всё ясно. Оно одновременно является и линейным выходом и выходом на телефоны (наушники). Его импеданс, как правило, мал, и его можно не измерять. Именно такие аудио-выходы используются в ноутбуках.

Когда же гнёзд целых шесть и есть ещё парочка на передней панели системного блока, а каждому гнезду можно назначить определённую функцию, то выходное сопротивление гнёзд может существенно отличаться.

Обычно, самый низкий импеданс соответствует гнезду салатового цвета, которое по-умолчанию и является линейным выходом.

Цвет / расположение Состояние
переключателя
Телефоны
(Ом)
Линейный выход

(Ом)

Салатовый / Тыл 5 230
Серый / Тыл 7 230
Салатовый / Фронт 12 80
Ноутбук 0,7 Не переклю-чается

Пример замера импеданса нескольких разных выходов аудиокарты установленных в режим «Телефоны» и «Линейный выход».

Как видно из формулы, абсолютные значения измеренного напряжения роли не играют, потому эти замеры можно делать задолго до калибровки осциллографа.

Пример расчёта.

R1 = 30 Ом.

U1 = 6 делений.

U2 = 7 делений.

Rx = 30(7 – 6) / 6 = 5 (Ом).

Проверка работы

Сначала опыт с
LC-контуром:

настроив срабатывания по превышению порога, подключив щупы осциллографа и зарядив конденсатор наблюдаются затухающие колебания.

Также подал прямоугольный сигнал 1 кГц, ну что на него просто смотреть, цепляю 
фильтр низких частот:

При увеличении сопротивления частота среза уменьшается, то де самое можно сделать программно, там есть настройки ФНЧ и ФВЧ.

Но что еще интересней, нажав на кубик можно провести
Быстрое Преобразование Фурье:

Проверка на прямоугольном сигнале, это уже было:

Также изменение ширины импульса сигнала по закону синуса:

Здесь же включается ФНЧ с разным порядком:

Ещё здесь есть возможность длительной регистрации значений напряжения (
МИН, МАКС, СРЕДНЕКВАДРАТИЧЕСКОЕ), что также очень полезно.

Инструкция по использованию

Назначение кнопок и переключателей. Плата имеет 3 переключателя: коммутация входа, чувствительность и её множитель. Вход
переключается на 3 положения:
❶ «GND» — вход замкнут на землю и экран отображает только собственные помехи, можно судить об отклонении от нуля заводских настроек. В идеале
линия должна быть на нуле, однако имеются отклонения при разной чувствительности.
❷ «AC» — Вход реагирует только на переменные и пульсирующие токи, при подаче на щуп постоянного напряжения, луч лишь немного дергается. Измерять
постоянное напряжение не получится.
❸»DC» — Вход подключен без разделительного конденсатора, поэтому реагирует как на переменное напряжение, так и на постоянное.
Можно использовать как милливольтметр.

Чувствительность 1В; 0,1В; 10мВ; в небольших пределах регулируется множителями X1; X2; X5; Произведение чувствительности и
множителя — одна клетка на экране по вертикали. Эта величина отображается на экране.

Справа от экрана расположено 4 кнопки (1 снизу не в счёт — это перезагрузка): пауза/пуск — позволяет остановить меняющуюся
картинку и рассмотреть более подробно, выбор параметра — позволяет выбрать один из нескольких параметров и кнопками +\-
подкорректировать. Выбираемые параметры (по хронологии нажатий):
❶ Длительность одной клетки по горизонтали, по факту настраивается под нужную частоту;
❷ Режим воспроизведения, не заметил особой разницы между тремя режимами, только незначительные нюансы, режим «AUTO» самый удобный;
❸ Срабатывание триггера, по фронту или спаду сигнала. Я толком не разобрался в этой функции, это связано с наладкой
устройств с цифровым, логическим сигналом;
❹ Курсор триггера, можно выставить нужную величину напряжения для срабатывания. При достижении кривой сигнала выставленного
значения срабатывает светодиод под экраном. Кроме этого, когда курсор в пределах действующего сигнала, график более
удобно рассматривать, он не плывёт. Для аналоговых измерений лучше выставлять его на нуль;
❺ Прокрутка картинки влево/вправо. Функция полезна при паузе — можно рассмотреть кривую сигнала большей длительности, чем позволяет
экран;
❻ Курсор нуля, собственно его можно перемещать как вверх, так и вниз. Таким образом можно рассматривать положительные или
отрицательные полуволны более подробно;

Что касается параметров измеряемого сигнала в рабочей области экрана — разберёмся, что они означают:Freq — собственно частота сигнала;Cycl — время периода;Pw — время полупериода;Duty — коэффициент заполнения (западный аналог скважности, 50% равен скважности 2);Vmax — Максимальное амплитудное значение сигнала;Vmin — Минимальное амплитудное значение (максимальное отрицательное);Vavr — Среднее напряжение;Vpp — Значение от Vmin до Vmax, если размах будет от -5 В до +5 В, то это значение получается 10 В;Vrms — Среднеквадратическое напряжение;

Выставление нуля. При первом включении сильно бросается в глаза, что нулевой курсор не совпадает с линией
сигнала. Несовпадение это проявляется по-разному при разном положении чувствительности и множителей. Чтобы подкорректировать
луч, необходимо кнопкой «Выбор параметра» выбрать курсор нуля, а затем зажать на 2 секунды кнопку «Пауза/пуск». Аналогичным образом
курсор триггера выставляется на тот же уровень, что и нуль.

Если не нужны значения сигнала на экране — кнопкой «Выбор параметра» выбирается длительность развертки и на 2
секунды нажимается «Пауза/пуск». Идентично надписи возвращаются на экран.

Самое главное: не стоит забывать, что максимальное входное напряжение на щупах осциллографа не должно превышать 50 В.
Для измерений более высоких напряжений нужно сооружать дополнительный делитель или брать другой щуп со встроенным делителем.

Мы обязательно рассмотрим самодельный делитель и корпус к описываемой плате, но позднее. Сейчас же немного затронем
практическую часть, а именно — какую пользу может принести эта «игрушка»?

Прошивка

С помощью программатора-отладчика ST-LINK V2

Его можно сделать, но проще приобрести. Используется программы
STM32CubeProgrammer:

1) Скачать с 
GitHub весь файл архив (Code -> Download ZIP).

Далее распаковать архив в любую папку.

2) Подключить
STLINK к синей пилюле и его через USB к ПК или телефону:

Если была ранее произведена прошивка, то перед подключением зажать кнопку сброса (
NRST) и после подключения отпустить. Нажать Connect, подключение должно пройти успешно (в случае необходимости обновить прошивку стлинка)

3) Нажать
Open File и выбрать нужную прошивку.

4) Всё завершено:

С помощью USB-TTL преобразователя

Многим будет проще прошить МК использую обычный
USB-COM преобразователь и телефон.

1) Подключить преобразователь так:

RX PA9
TX PA10
5V 5V
GND GND

2) Перед подачей питания на плате установить перемычки так, а если кнопка, то зажать
BOOT перед подключением питания.

3) Скачать приложение
STM32 Utils и следовать фотоинструкции:

Как измерить входное сопротивление линейного входа?

Чтобы рассчитать аттенюатор для линейного входа аудиокарты, нужно знать входное сопротивление линейного входа. К сожалению, измерить входное сопротивление при помощи обычного мультиметра нельзя. Это связано с тем, что во входных цепях аудиокарт имеются разделительные конденсаторы.

Входные же сопротивления разных аудиокарт могут очень сильно отличаться. Так что, этот замер сделать всё-таки придётся.

Для измерения входного импеданса аудокарты по переменному току, нужно подать на вход через балластный (добавочный) резистор синусоидальный сигнал частотой 50 Гц и рассчитать сопротивление по приведённой формуле.

Синусоидальный сигнал можно сформировать в программном генераторе НЧ, ссылка на который есть в «Дополнительных материалах». Замер амплитудных значений также можно произвести программным осциллографом.

На картинке изображена схема подключений.

Напряжения U1 и U2 нужно измерить виртуальным осциллографом в соответствующих положениях выключателя SA. Абсолютные значения напряжения знать не нужно, поэтому расчёты валидны до калибровки прибора.

Пример расчёта.

R1 = 50кОм.

U1 = 100

U2 = 540

Rx = 50 * 100 / (540 – 100) ≈ 11,4 (кОм).

Цвет / Расположение Импеданс (кОм)
Красный / Тыл 82
Чёрный / Тыл 75
Салатовый / Фронт 11,4
Розовый / Фронт 50
Ноутбук 8,5

Вот результаты замеров импеданса разных линейных входов.

Как видите, входные сопротивления отличаются в разы, а в одном случае почти на порядок.

Что делать, если нет тестера? Или опасные опыты.

Можно ли использовать для калибровки осветительную сеть?

Так как любой уважающий себя радиолюбитель, несмотря на все предупреждения, первым делом пытается залезть своим детищем в розетку, я счёл необходимым рассказать об этом опасном занятии подробнее.

По ГОСТу напряжение сети не должно выходить за пределы 220 Вольт – 10% +5%, хотя, в реальной жизни, это условие соблюдается не так часто, как хотелось бы. Ошибки измерений в процессе подгонке резисторов и замерах импеданса также могут привнести высокие погрешности при данном способе калибровки.

Если Вы собрали прецизионный делитель, например, на высокоточных резисторах, и если известно, что в вашем доме напряжение в осветительной сети поддерживается с достаточной точностью, то её можно использовать для грубой калибровки осциллографа.

Но, есть очень много НО, из-за которых, я Вам категорически не рекомендую это делать

Первое и наиболее важное «НО», это сам факт того, что Вы читаете эту статью. Тот, кто на ты с электричеством, вряд ли стал бы тратить на это время

Но, если и это не аргумент…

Самое главное!

1. Компьютер должен быть надёжно заземлён!!!

2. Ни под каким предлогом не суйте в розетку «земляной» провод! Это тот провод, который соединён через корпус разъёма линейного входа с корпусом системного блока!!! (Другие названия этого провода: масса, корпус, общий, экран и т.д.) Тогда, вне зависимости от того, попадёте Вы в фазу или в ноль, не произойдёт короткое замыкание.

Другими словами, в розетку можно втыкать только провод, который соединён с резистором R1 номиналом 1 мегом, расположенном в схеме адаптера!!!

Если же Вы попытаетесь воткнуть в сеть провод, соединенный с корпусом, то в 50% случаев это приведёт к самым печальным последствиям.

Так как максимальная неограниченная амплитуда на линейном входе около 250мВ, то в положении делителя 1:100 можно будет увидеть амплитуду величиной примерно в 50… 250 Вольт (в зависимости от входного импеданса). Поэтому, для измерения напряжения сети, адаптер должен быть оборудован делителем 1: 1000.

Делитель 1:1000 можно рассчитать по аналогии с делителем 1:100.

Пример расчёта делителя 1:1000.

Верхнее плечо делителя = 1007кОм.

Входной импеданс = 50кОм.

Коэффициента деления по входу 1:1 = 20,14.

Определяем общий коэффициент деления для входа 1:1000.

21,14*1000 = 21140 (раз)

Рассчитываем величину резистора для делителя.

1007*50 / 50*21140 –50 –1007 ≈ 47,7 (Ом)

Так как входное сопротивление адаптера при делении 1:100 близко к 1мОм, я поступил проще и воспользовался осциллографической делительной головкой 1:10, которая как раз рассчитана на входной импеданс 1мОм

Обратите внимание, что отклонение входного сопротивления этого профессионального делителя – 10%, что даже выше, чем у нашего игрушечного

При использовании входа 1:100 и головки 1:10, общий коэффициент деления составляет 1:1000.

Когда Вы увидите на экране осциллографа «AudioTester» напряжение сети, подгоните амплитуду под 311 милливольт путём подбора числа вводимого в форму.

Почему 311мВ?

220В (действующее) * √2 = 311В (амплитудное)

Но, ведь мы используем делитель 1:1000.

311В : 1000 = 311мВ

При калибровке осциллографа «Авангард», выберете шкалу вольтметра «12,5». Когда увидите напряжение сети на экране, введите в окошко калибровки значение 311. При этом вольтметр «Авангард-а» должен начать показывать напряжение 311мВ или близкое к нему.

Небольшая ремарка. Дело в том, что форма напряжения в современных электросетях отличается от синусоидальной. Это связано с тем, что в большинстве современных электроприборов используются импульсные блоки питания. Последние «подрезают» верхушки синусоиды и фактически снижают амплитудное значение напряжения. Так что, по-хорошему, нужно ориентироваться не на видимую кривую, а на её «синусоидальное продолжение».

Технические данные и область применения.

Так как во входных цепях аудиокарты есть разделительный конденсатор, то и осциллограф может использоваться только с «закрытым входом». То есть, на его экране можно будет наблюдать только переменную составляющую сигнала. Однако, при некоторой сноровке, с помощью осциллографа «AudioTester» можно измерить и уровень постоянной составляющей. Это может пригодиться, например, когда время отсчёта мультиметра не позволяет зафиксировать амплитудное значение напряжения на конденсаторе, заряжающемся через большой резистор.

Нижний предел измеряемого напряжения ограничен уровнем шума и уровнем фона и составляет примерно 1мВ. Верхний предел ограничивается только параметрами делителя и может достигать сотен вольт.

Частотный диапазон ограничен возможностями аудиокарты и для бюджетных аудиокарт составляет: 0,1Гц… 20кГц (для синусоидального сигнала).

Конечно, речь идёт о довольно примитивном приборе, но в отсутствие более продвинутого девайса, вполне может сгодиться и этот.

Прибор может помочь в ремонте аудиоаппаратуры или использоваться в учебных целях, особенно если его дополнить виртуальным генератором НЧ.
Кроме этого, с помощью виртуального осциллографа легко сохранить эпюру для иллюстрации какого-либо материала, или для размещения в Интернете.

3Калибровкаосциллографа DSO138

Теперь откалибруем осциллограф. Подключите красный щуп пробника к петле сигнала самотестирования, а чёрный оставьте неподключённым. Переключатель SEN1 поставьте в положение «0.1V», SEN2 в положение «X5», а CPL – в положение «AC» или «DC». С помощью тактовой кнопки SEL переместите курсор на метку времени, а кнопками и выставьте время «0.2ms», как на иллюстрации. На осциллограмме должен быть виден красивый меандр. Если края импульсов закругляются или имеют резкие острые пики по краям, нужно, поворачивая отвёрткой конденсатор C4, добиться того, чтобы импульсы сигнала стали максимально близкими к прямоугольным.

Калибровка цифрового осциллографа DSO138

Теперь переключатель SEN1 поставим в положение «1V», SEN2 – в положение «X1». Остальные настройки оставим прежними. Аналогично предыдущему пункту, если сигнал далёк от прямоугольного, то подкорректируем его с помощью регулировки конденсатора C6.

Калибровка цифрового осциллографа DSO138

На этом настройка осциллографа DSO138 закончена. Давайте проверим его в боевых условиях. Подключим щупы осциллографа к работающей электрической схеме и посмотрим сигнал.

Осциллограф DSO138 в работе

Как откалибровать виртуальный осциллограф?

Чтобы произвести калибровку осциллографа, нужно иметь хоть какой-нибудь измерительный прибор. Подойдёт любой стрелочный тестер или цифровой мультиметр, которому Вы доверяете.

В связи с тем, что у некоторых тестеров слишком высокая погрешность при измерении переменного напряжения до 1-го Вольта, калибровку производим при максимально возможном, но неограниченном по амплитуде, напряжении.

Перед калибровкой производим следующие настройки.

Отключаем эквалайзер аудиокарты.

«Уровень линейного выхода», «Уровень WAVE», «Уровень линейного входа» и «Уровень записи» устанавливаем в положение максимального усиления. Это обеспечит повторяемость результата при дальнейших измерениях.

Сбросив на всякий случай настройки генератора командой Command > Get Generator Default Setting, устанавливаем «Gain» (уровень) в 0db.

Выбираем частоту генератора 50Hz переключателем «Frequency Presets» (предустановки), так как все любительские приборы для измерения переменного напряжения умеют работать на этой частоте, да и наш адаптер пока не может корректно работать на более высоких частотах.

Переключаем вход адаптера в режим 1:1.

Глядя на экран осциллографа, подбираем при помощи ручки генератора «Плавно» (Trim) максимальный неограниченный уровень сигнала.

Сигнал может ограничиваться, как на входе аудиокарты, так и на её выходе, при этом точность калибровки может существенно снизиться. В «AudioTester-е» даже имеется специальный индикатор перегрузки, который выделен на скриншоте красным цветом.

Замеряем тестером напряжение на выходе генератора и рассчитываем величину соответствующего ему амплитудного значения.

Пример.

Показание вольтметра = 1,43 Вольта (действующее).

Получаем амплитудное значение.

1,432*√2 = 2,025 (Вольт)

Команда «Options > Calibrate» вызывает окно калибровки «AudioTester-а».

И хотя возле окошка ввода указана размерность в «mVrms», что по идее должно означать среднеквадратичное значение, в реальности, в осциллографе «oszi v2.0c» из комплекта «AudioTester-а», вводимые значения соответствуют… непонятно чему. Что, правда, вовсе не мешает точно откалибровать прибор.

Путём ввода значений с небольшим шагом можно точно подогнать размер изображения синусоиды под вычисленное выше амплитудное значение.

На картинке видно, что амплитуда сигнала уложилась чуть больше, чем в два деления, что соответствует 2,02 Вольта.

Точность отображения амплитуды сигналов, полученных с входов 1:20 и 1:100 будет зависеть от точности подбора соответствующих резисторов делителя.

При калибровке осциллографа «Авангард», полученные при измерении тестером значения также нужно умножить на √2, так как и вольтметр, и калибратор «Авангард-а» рассчитан на амплитудные значения.

Вносим полученное значение в окошко калибровки в милливольтах – 2025 и нажимаем Enter.

Чтобы откалибровать второй диапазон осциллографа «Авангард», который отмечен, как «250», нужно сначала рассчитать реальный коэффициент деления, сравнив показания встроенного вольтметра в двух диапазонах делителя: 1:1 и 1:20. Вольтметр осциллографа, при этом должен находиться в положении «12,5»

Пример.

122 / 2323 = 19,3

Затем нужно подправить файл «calibr», который можно открыть в блокноте (Notepad-е). Слева файл до правки, а справа – после.

Файл «calibr» находится в той же самой директории, где расположена текущая копия программы.

В восьмую строчку вносим реальный коэффициент деления, соответствующий делителю первого (левого) канала.

Если вы построили двухканальный адаптер, то в девятую строчку вносим поправку для второго (правого) канала.

Импульсный осциллограф

Импульсный осциллограф С1 — 9 ( ЭО-58М) является универсальным прибором высокого класса.

Схема измерения задержки времени с помощью генератора переменной частоты.| Схема измерения времени срабатывания реле и переключателей.

Импульсный осциллограф превращен в точный измеритель интервалов времени устройством калиброванной зигзагообразной развертки. Запись осуществляется однократным фотографированием осциллограммы. Запускаемая измеряемым процессом зигзагообразная развертка стабилизируется кварцем на частоте 2 Мгц; на нее наложены отклоняющие метки времени двухнаносекунд-ной продолжительности, следующие через интервалы 50 нсек.

Однолучевой импульсный осциллограф С1 — 20 общего применения используют для исследования импульсных напряжений.

Импульсный осциллограф типа С1 — 20 является универсальным прибором высокого класса. Генератор развертки работает как в автоколебательном, так и в ждущем режимах. Диапазон длительностей развертки, отнесенных к 1 см шкалы экрана, составляет 0 025 — 10 мс / см и разделен на 35 калиброванных фиксированных поддиапазонов.

К импульсным осциллографам предъявляются высокие требования, и поэтому они являются более сложными приборами, чем низкочастотные осциллографы. Импульсные осциллографы имеют намного большую ширину полосы пропускаемых частот, меньшие входные емкости, значительно более высокую частоту линейной развертки и содержат ряд дополнительных узлов, важнейшими из которых являются генератор ждущей развертки, генератор меток времени и канал электрода, управляющего яркостью луча.

К импульсным осциллографам предъявляются высокие требования, и поэтому они являются более сложными и точными приборами, чем низкочастотные осциллографы лабораторного типа. Импульсные осциллографы имеют намного большую ширину полосы пропу1 скаемых частот, меньшие входные емкости, значительно более высокую частоту линейной развертки и содержат ряд дополнительных элементов, важнейшими из которых являются генератор ждущей развертки, генератор меток времени и канал электрода, управляющего яркостью луча.

К импульсным осциллографам предъявляются высокие требования, и поэтому они являются более сложными и точными приборами, чем обычные осциллографы лабораторного типа. Импульсные осциллографы имеют намного большую ширину полосы пропускаемых частот, меньшие входные емкости, значительно более высокую частоту линейной развертки и содержат ряд дополнительных элементов, важнейшими из которых являются: генератор ждущей развертки, генератор меток времени и канал электрода, управляющего яркостью луча.

Калибратор напряжения осциллографа С1 — 5.

В современных импульсных осциллографах измерение напряжения производится методом сравнения с переменным напряжением известной величины, полученным от калибратора напряжения.

В современных импульсных осциллографах, как правило, предусматриваются два калибратора: амплитуды и длительности. Калибратор амплитуды представляет собой схему, позволяющую подавать в канал вертикального отклонения известное регулируемое напряжение питающей сети. Амплитуда стабилизированного напряжения либо калибрована, либо контролируется по вольтметру, имеющемуся в осциллографе. С этим напряжением сравнивается амплитуда исследуемого сигнала.

В современных импульсных осциллографах на время основного хода луча на управляющий электрод трубки подается положительный прямоугольный импульс подсвета, получаемый от генератора ждущей раз вертки. Тем не менее изображения крутых фронтов импульсов остаются сравнительно бледными. Поэтому в тех случаях, когда нужно детально исследовать форму импульсов и имеется возможность изменения частоты их следования, наблюдение следует вести при повышенной частоте, что способствует увеличению яркости.

Карта напряжений прибора С1 — 1.

При проверке электронных импульсных осциллографов проводится определение чувствительности и неравномерности частотной характеристики усилителей вертикального и горизонтального отклонения, длительности ждущей развертки, показаний измерителя амплитуды импульсов, погрешности входного делителя, величины мощности, потребляемой прибором от сети питания.

Отечественной промышленностью выпускаются двух-лучевые импульсные осциллографы С1 — 15, С1 — 17 и им аналогичные.

Практическое применение

Этим прибором можно прекрасно пользоваться как вольтметром и милливольтметром как постоянного, так и переменного напряжения.
Причём мы уже не ограничены так сильно частотой или формой сигнала, как при использовании мультиметра

При измерениях
следует уделять больше внимание не амплитудным значениям, а среднеквадратичным Vrms. Именно среднеквадратичное значение учитывается
при измерении переменного напряжения — в сети амплитудные значения достигают более 310 В, однако действующее значение именно 220
(среднеквадратическое).

Так как мы можем с достаточно высокой точностью измерять напряжение, то соответственно можем более точно измерить
любые токи на шунте,
для этого нужно всего лишь научиться использовать закон Ома.

Осциллографом можно прекрасно смотреть сигналы звукового тракта — для таких целей это никакая не игрушка. При сносном качестве
можно смотреть процессы в импульсных источниках питания. Эта плата приобреталась мной именно для этих целей.

Как пример: осциллограф помог мне наладить блок питания шуруповерта (описание есть в этом разделе) с мощными IGBT-транзисторами.
Я никак не мог понять, почему блок не хочет запускаться, перемотал коммутирующий трансформатор с разными данными — никак. Когда
оценил сигналы на затворах, всё стало ясно — не хватает открывающего напряжения, нужно добавить витков в затворных обмотках.
Вот этот затухающий сигнал, достаточно чёткий, частота 44 кГц:

Для «гаражной» диагностики авто приборчик также можно применять. По крайней мере там, где сигнал датчика не передается по цифровому
протоколу. Например ниссановские датчики положения коленвала|распредвала. В интернете много бабкиных методов от диванных диагностов,
которые не дают никаких однозначных реультатов. Я пришел к выводу, что единственный и верный способ проверки автомобильных датчиков
холла — посмотреть сигнал осциллографом.

Сигнал ДПРВ при прокрутке стартером, QG13

Сигнал ДПКВ на ХХ, QG13

Сигнал управления катушками зажигания с ЭБУ. Микросхема блока управления, которая подает эти сигналы, маломощная. Поэтому подключать на
эту линию лампочки или светодиоды, для проверки, очень рискованно.

На этом публикацию заканчиваю. Если данная тема вообще будет интересна посетителям сайта, то обязательно её расширю и дополню.

О виртуальных осциллоскопах.

Когда-то у меня была идея фикс: продать аналоговый осциллограф и купить ему на замену цифровой USB осциллоскоп. Но, прошвырнувшись по рынку, обнаружил, что самые бюджетные осциллографы «начинаются» от 250 долларов, да и отзывы о них не очень хорошие. Более же серьёзные приборы стоят в несколько раз дороже.

Так что, решил я ограничиться аналоговым осциллографом, а для построения какой-нибудь эпюры для сайта, использовать виртуальный осциллограф.

Скачал из сети несколько программных осциллографов и попытался что-нибудь померить, но ничего путного из этого не вышло, так как, либо не удавалось откалибровать прибор, либо интерфейс не годился для скриншотов.

Было, уже забросил это дело, но когда подыскивал себе программу для снятия АЧХ, наткнулся на комплект программ «AudioTester». Анализатор из этого комплекта мне не понравился, а вот осциллограф «Osсi» (далее буду его называть «AudioTester») оказался в самый раз.

Этот прибор имеет интерфейс схожий с обычным аналоговым осциллографом, а на экране есть стандартная сетка, которая позволяет измерять амплитуду и длительность. https://oldoctober.com/

Из недостатков можно назвать некоторую нестабильность работы. Программа иногда подвисает и для того, чтобы её сбросить приходится прибегать к помощи Task Manager-а. Но, всё это компенсируется привычным интерфейсом, удобством использования и некоторыми очень полезными функциями, которые я не встречал ни в одной другой программе подобного типа.

Внимание! В комплекте программ «AudioTester» есть генератор низкой частоты. Я не рекомендую его использовать, так как он пытается самостоятельно управлять драйвером аудиокарты, что может привести к необратимому отключению звука

Если Вы решите его использовать позаботьтесь о точке восстановления или о бэкапе ОС. Но, лучше скачайте нормальный генератор из «Дополнительных материалов».

Другую интересную программу виртуального осциллографа «Авангард» написал наш соотечественник Записных О.Л.

У этой программы нет привычной измерительной сетки, да и экран слишком большой для снятия скриншотов, но зато есть встроенный вольтметр амплитудных значений и частотомер, что частично компенсирует указанный выше недостаток.

Частично потому, что на малых уровнях сигнала и вольтметр и частотомер начинают сильно привирать.

Однако для начинающего радиолюбителя, который не привык воспринимать эпюры в Вольтах и миллисекундах на деление, этот осциллограф может вполне сгодиться. Другое полезное свойство осциллографа «Авангард» – возможность независимой калибровки двух имеющихся шкал встроенного вольтметра.

Так что, я расскажу о том, как построить измерительный осциллограф на базе программ «AudioTester» и «Авангард». Конечно, кроме этих программ понадобится и любая встроенная или отдельная, самая бюджетная аудиокарта.

Собственно, все работы сводятся к тому, чтобы изготовить делитель напряжения (аттенюатор), который позволил бы охватить широкий диапазон измеряемых напряжений. Другая функция предлагаемого адаптера – защита входа аудиокарты от повреждения при попадании на вход высокого напряжения.

Подведём итоги

Преимущества аналоговых осциллографов:

  • знакомый интерфейс;
  • обновление экрана в реальном времени, при отображении быстро изменяющихся сигналов во времени;
  • простые, понятные средства управления для наиболее часто используемых настроек (коэффициент развертки, коэффициент чувствительности, смещение сигнала, уровень запуска и т.д.);
  • невысокая стоимость.

Недостатки аналоговых осциллографов:

  • невысокая точность в зависимости от частоты сигнала и коэффициента развертки мерцаниие и/или тусклость экрана;
  • отсутствие возможности отображения сигнала до запускающего момента;
  • ограниченная полоса пропускания;
  • высокая эксплуатационная стоимость;
  • ограниченные средства измерения параметров сигналов.

Осциллограф С1-72 — достойный прибор, который хорошо справляется со своей задачей, при том, что купить его можно дёшево, а прослужит он вам ещё ни одно десятилетие.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: