Единицы измерения
C= e*S/d
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады.10-6
- 1 нанофарада – одна миллиардная часть фарады. 10-9
- 1 пикофарада -10-12 фарады.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка четырьмя цифрами
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.
Планарные керамические конденсаторы
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.
Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Планарные электролитические конденсаторы
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Будет интересно Что такое полярность конденсатора и как ее определить?
Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Для чего в конденсаторы добавляли драгметаллы?
Многие люди не понимают того расточительства, которое позволяли себе советские инженеры, добавляя в радиодетали драгоценные металлы. Если говорить о физических и химических свойствах золота и серебра, то они достаточно инертные металлы в химическом смысле. В реакции они вступают с трудом, поэтому они практически не подвергаются коррозии. При этом эти два драгметалла прекрасно проводят электрический ток.
Продать конденсаторы
Палладий и платина более химически активные, поэтому они часто используются в катализаторах в химической промышленности. Но их тоже применяли при производстве радиодеталей. Более того, они использовались для того, чтобы заменить золото и серебро, которые в советские времена стоили гораздо дешевле золота, а палладий вообще имел цену цветного металла.
Это в наше время палладий стоит почти в два раза дороже золота, и цена не этот драгметалл постоянно растет, что сильно влияет на стоимость химических катализаторов в мире. Еще пять лет назад конденсаторы, в которых был только палладий, просто выбрасывали – процесс получения из конденсаторов драгоценного палладия стоил гораздо дороже стоимости чистого палладия, который можно было получить из радиодеталей. Именно поэтому драгметаллы в радиодеталях использовались часто, но в малых количествах. Практически во всех радиодеталях советского производства обязательно присутствовало серебро.
Благородные металлы не окисляются, не подвергаются коррозии, и прекрасно проводят электрический ток. Кроме этого, и золото, и серебро можно без труда нанести тончайшей пленкой на любые медные контакты, тем самым увеличив многократно их срок службы.
Именно поэтому радиодетали с драгметаллом можно встретить повсюду во всей советской электронике – и специального назначения, как измерительные приборы и военная техника, так и в бытовых приборах, как телевизоры и магнитофоны.
Конденсатор КМ 6F
Справочник содержания драгоценных металлов в радиодеталях основаный на справочных данных различных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
Радиодетали могут содержать золото, серебро, платину и МПГ (Металлы платиновой группы, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ)
Основные параметры конденсаторов
Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом.
Первое – ёмкость конденсатора. Измеряется в долях Фарады. Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается. Третье – допустимое рабочее напряжение
Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях
Основные типы конденсаторов выпускаемых в СССР (импортная маркировка)
К10 -Керамический, низковольтный (Upaб:1600B) К50 -Электролитический, фольговый, Алюминиевый К15 -Керамический, высоковольтный (Upa6:1600B) К51 -Электролитический, фольговый, танталовый,ниобиевый и др. К20 -Кварцевый К52 -Электролитический, объемно-пористый К21 -Стеклянный К53 -Оксидо-полупроводниковый К22 -Стеклокерамический К54 -Оксидно-металлический К23 -Стеклоэмалевый К60- С воздушным диэлектриком К31- Слюдяной малой мощности (Mica) К61 -Вакуумный К32 -Слюдяной большой мощности К71 -Пленочный полистирольный(KS или FKS) К40 -Бумажный низковольтный (ираб:2 kB) с фольговыми обкладками К72 -Пленочный фторопластовый (TFT) К73 -Пленочный полиэтилентерефталатный (KT ,TFM, TFF или FKT) К41 -Бумажный высоковольтный (ираб:2 kB) с фольговыми обкладками К75 -Пленочный комбинированный К76 –Лакопленочный (MKL) К42 -Бумажный с металлизированными Обкладками (MP) К77 -Пленочный, Поликарбонатный (KC, MKC или FKC) К78 – Пленочный полипропилен (KP, MKP или FKP)
Маркировка конденсаторов с помощью численно-буквенного кода.
Маркировка конденсаторов может указывать на следующие параметры: Тип конденсатора, его номинальную емкость, допустимое отклонение емкости, Температурный Коэффициент Емкости(ТКЕ), номинальное напряжение работы.
Порядок маркировки может быть разным — первой строкой может стоять номинальное напряжение, ТКЕ или фирменный знак производителя. ТКЕ может отсутствовать вовсе, номинальное напряжение тоже указываются не всегда! Практически всегда имеется маркировка номинальной емкости. Что касается емкости, то имеются различные способы ее знаковой кодировки. 1. Маркировка емкости с помощью трех цифр. При такой маркировке первые две цифры указывают на значение емкости в пикофарадах, а последняя на разрядность, т. е. количество нулей, которых к первым двум цифрам необходимо добавить. Но если последняя цифра — «9» происходит деление на 10.
Код | Емкость(пФ) | Емкость(нФ) | Емкость(мкФ) |
109 | 1,0(пФ) | 0,001(нФ) | 0,000001(мкФ) |
159 | 1,5(пФ) | 0,0015(нФ) | 0,0000015(мкФ) |
229 | 2,2(пФ) | 0,0022(нФ) | 0,0000022(мкФ) |
339 | 3,3(пФ) | 0,0033(нФ) | 0,0000033(мкФ) |
479 | 4,7(пФ) | 0,0047(нФ) | 0,0000047(мкФ) |
689 | 6,8(пФ) | 0,0068(нФ) | 0,0000068(мкФ) |
100 | 10(пФ) | 0,01(нФ) | 0,00001(мкФ) |
150 | 15(пФ) | 0,015(нФ) | 0,000015(мкФ) |
220 | 22(пФ) | 0,022(нФ) | 0,000022(мкФ) |
330 | 33(пФ) | 0,033(нФ) | 0,000033(мкФ) |
470 | 47(пФ) | 0,047(нФ) | 0,000047(мкФ) |
680 | 68(пФ) | 0,068(нФ) | 0,000068(мкФ) |
101 | 100(пФ) | 0,1(нФ) | 0,0001(мкФ) |
151 | 150(пФ) | 0,15(нФ) | 0,00015(мкФ) |
221 | 220(пФ) | 0,22(нФ) | 0,00022(мкФ) |
331 | 330(пФ) | 0,33(нФ) | 0,00033(мкФ) |
471 | 470(пФ) | 0,47(нФ) | 0,00047(мкФ) |
681 | 680(пФ) | 0,68(нФ) | 0,00068(мкФ) |
102 | 1000(пФ) | 1(нФ) | 0,001(мкФ) |
152 | 1500(пФ) | 1,5(нФ) | 0,0015(мкФ) |
222 | 2200(пФ) | 2,2(нФ) | 0,0022(мкФ) |
332 | 3300(пФ) | 3,3(нФ) | 0,0033(мкФ) |
472 | 4700(пФ) | 4,7(нФ) | 0,0047(мкФ) |
682 | 6800(пФ) | 6,8(нФ) | 0,0068(мкФ) |
103 | 10000(пФ) | 10(нФ) | 0,01(мкФ) |
153 | 15000(пФ) | 15(нФ) | 0,015(мкФ) |
223 | 22000(пФ) | 22(нФ) | 0,022(мкФ) |
333 | 33000(пФ) | 33(нФ) | 0,033(мкФ) |
473 | 47000(пФ) | 47(нФ) | 0,047(мкФ) |
683 | 68000(пФ) | 68(нФ) | 0,068(мкФ) |
104 | 100000(пФ) | 100(нФ) | 0,1(мкФ) |
154 | 150000(пФ) | 150(нФ) | 0,15(мкФ) |
224 | 220000(пФ) | 220(нФ) | 0,22(мкФ) |
334 | 330000(пФ) | 330(нФ) | 0,33(мкФ) |
474 | 470000(пФ) | 470(нФ) | 0,47(мкФ) |
684 | 680000(пФ) | 680(нФ) | 0,68(мкФ) |
105 | 1000000(пФ) | 1000(нФ) | 1,0(мкФ) |
2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.
Код | Емкость(мкФ) |
µ1 | 0,1 |
µ47 | 0,47 |
1 | 1,0 |
4µ7 | 4,7 |
10µ | 10,0 |
100µ | 100,0 |
3.Третий вариант.
Код | Емкость(мкФ) |
p10 | 0,1пФ |
Ip5 | 0,47пФ |
332p | 332пФ |
1HO или 1no | 1нФ |
15H или 15no | 15,0нФ |
33H2 или 33n2 | 33,2нФ |
590H или 590n | 590нФ |
m15 | 0,15МкФ |
1m5 | 1,5мкФ |
33m2 | 33,2мкФ |
330m | 330мкФ |
10m | 10,0мкФ |
У советских конденсаторов вместо латинской «р» ставилось «п».
Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).
Буквенное обозначение | Допуск(%) |
B | ± 0,1 |
C | ± 0,25 |
D | ± 0,5 |
F | ± 1 |
G | ± 2 |
J | ± 5 |
K | ± 10 |
M | ± 20 |
N | ± 30 |
Q | -10…+30 |
T | -10…+50 |
Y | -10…+100 |
S | -20…+50 |
Z | -20…+80 |
Далее, может следовать(а может и отсутствовать!) маркировка Температурного Коэффициента Емкости(ТКЕ). Для конденсаторов с ненормируемым ТКЕ кодировка производится с помощью букв.
Допуск при -60²…+85²(%) обозначение | Буквенный код |
± 10 | B |
± 20 | Z |
± 30 | D |
± 50 | X |
± 70 | E |
± 90 | F |
Конденсаторы с линейной зависимостью от температуры.
ТКЕ(ppm/²C) | Буквенный код |
100(+130….-49) | A |
33 | N |
0(+30….-47) | C |
-33(+30….-80) | H |
-75(+30….-80) | L |
-150(+30….-105) | P |
-220(+30….-120) | R |
-330(+60….-180) | S |
-470(+60….-210) | T |
-750(+120….-330) | U |
-500(-250….-670) | V |
-2200 | K |
Далее следует напряжение в вольтах, чаще всего — в виде обычного числа. Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.
Кроме того, напряжение конденсаторов может быть так же, закодировано с помощью букв(см. таблицу ниже).
Напряжение (В) | Буквеный код |
1 | I |
1,6 | R |
3,2 | A |
4 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | C |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
400 | Y |
450 | U |
500 | V |
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Применение
Главная сфера применения — это работа в цепях импульсного, переменного и постоянного тока. Их можно использовать в любой аппаратуре: системы связи, бытовая, научная и измерительная техника, промышленное оборудование — и это далеко не полный список возможного применения. Как в работе не перепутать конденсаторы КМ? Маркировка данного вида устройств осуществляется непосредственно на них и представлена буквенно-численным индексом. Поэтому, если есть желание приобрести один такой приборчик, то необходимо сначала найти, как он обозначается и как выглядит. Когда этот этап пройден, то следует отправиться в магазин радиотехники или на рынок, чтобы уже там найти конденсатор, похожий по виду и соответствующий указанной маркировке.
Конденсаторные установки серий УКЛН, УКЛ(П), УКЛ(ПН), УКБН, УК, УКЛ(П)НТ, УКМ, УКЛ
Таблица 3. Технические характеристики конденсаторных установок климатического исполнения У3
Тип | I
ном одной фазы, А |
Число ступеней | Габариты, м | Масса, кг |
Установки 0,38 кВ со ступенью регулирования 50 квар | ||||
УКЛН-0,38-150-50 | 228 | 3 | 1,22×0,53×1,66 | 335 |
УКПН-0,38-300-50 | 456 | 6 | 1,92×0,53×1,66 | 575 |
УКЛН-0,38-450-50 | 684 | 9 | 2,62×0,53×1,66 | 820 |
Установки 0,38 кВ со ступенчатым ручным регулированием | ||||
УКЛ(П)-0,38-216 | 336 | 2 | 1,92×0,5×1,66 | 607 |
УКЛ(П)-0,38-300 | 458 | |||
УКЛ(П)-0,38-324 | 488 | 3 | 2,62×0,5×1,66 | 875 |
УКЛ(П)-0,38-450 | 686 | |||
УКЛ(П)-0,38-432 | 656 | 4 | 3,3×0,5×1,66 | 1145 |
УКЛ(П)-0,38-600 | 916 | |||
Установки 0,38 кВ с автоматическим регулированием со ступенями регулирования 108 и 150 квар | ||||
УКЛ(ПН)-0,38-300-150 | 458 | 2 | 1,92×0,5×1,66 | 612 |
УКЛ(ПН)-0,38-216-108 | 336 | |||
УКЛ(ПН)-0,38-450-150 | 686 | 3 | 2,6x2x0,5×1,66 | 880 |
УКЛ(ПН)-0,38-324-108 | 488 | |||
УКЛ(ПН)-0,38-600-150 | 916 | 4 | 3,32×0,5×1,66 | 1150 |
УКЛ(ПН)38-432-108 | 656 | |||
Установки 0,38 кВ с автоматическим регулированием со ступенью 50 квар | ||||
УКБН-0,38-100-50 | — | 2 | 0,8×0,44×1,025 | 195 |
УКБН-0,38-200-50 | — | 4 | 0,8×0,44×1,81 | 365 |
УКБН-0,38-300-50 | — | 6 | 0,8×0,44×2,6 | 530 |
Установки 0,38 кВ нерегулируемые | ||||
УК-0,38-75 | 114 | — | 0,7×0,5×1,26 | 150 |
УК-0,38-150 | 228 | — | 0,7×0,65×1,66 | 245 |
Установки 0,66 кВ с автоматическим регулированием по напряжению и току со ступенями регулирования 240 квар | ||||
УКЛ(П) НТ-0,66-240 | — | 1 | 1,2×0,5×1,66 | 370 |
УКЛ(П) НТ-0,66-480 | — | 2 | 1,9×0,5×1,66 | 640 |
УКЛ(П) НТ-0,66-720 | — | 3 | 2,6×0,5×1,66 | 910 |
Примечание.
УК — установка конденсаторная; Л и П — размещение ячейки ввода — левое или правое; Н — регулирование по напряжению; Б — бесшкафная установка.
Таблица 4. Технические характеристики конденсаторных установок
Тип | Номинальная мощность, квар | Напряжение, кВ | Количество конденсаторных ячеек | Высота, мм | Масса, кг |
УКМ-6,3-400У1 | 400 | 6,3 | 2 | 2060 | 900 |
УКМ-10,5-400У1 | 400 | 10,5 | 2 | 2060 | 910 |
УКМ-6,3-600У1 | 600 | 6,3 | 3 | 2060 | 1185 |
УКМ-10,5-600У1 | 600 | 10,5 | 3 | 2060 | 1200 |
УКЛ-6,3-450У1 | 450 | 6,3 | 1 | 1800 | 700 |
УКЛ-6,3-900У1 | 900 | 6,3 | 2 | 1800 | 950 |
УКЛ-6,3-1350У1 | 1350 | 6,3 | 3 | 1800 | 1200 |
УКЛ-6,3-1800У1 | 1800 | 6,3 | 4 | 1800 | 1450 |
УКЛ-10,5-450У1 | 450 | 10,5 | 1 | 1800 | 700 |
УКЛ-10,5-900У1 | 900 | 10,5 | 2 | 1800 | 950 |
УКЛ-10,5-1350У1 | 1350 | 10,5 | 3 | 1800 | 1200 |
УКЛ-10,5-1800У1 | 1800 | 10,5 | 4 | 1800 | 1450 |
УК-6,3-300Л(П) У3 | 300 | 6,3 | 3 | 1800 | 670 |
УК-10,5-300Л(П) У3 | 300 | 10,5 | 3 | 1800 | 670 |
УК-6,3-450Л(П) У3 | 450 | 6,3 | 3 | 1800 | 670 |
УК-10,5-450Л(П) У3 | 450 | 10,5 | 3 | 1800 | 670 |
УК-6,3-675Л(П) У3 | 675 | 6,3 | 4 | 1800 | 915 |
УК-10,5-675Л(П)У3 | 675 | 10,5 | 4 | 1800 | 915 |
УК-6,3-600Л(П)У3 | 600 | 6,3 | 5 | 1800 | 1160 |
УК-6,3-900Л(П) У3 | 900 | 6,3 | 5 | 1800 | 1160 |
УК-10,5-600Л(П) У3 | 600 | 10,5 | 5 | 1800 | 116 |
УК-10,5-900Л(П)У3 | 900 | 10,5 | 5 | 1800 | 1160 |
УК-6,3-750Л(П) У3 | 750 | 6,3 | 6 | 1800 | 1450 |
УК-10,5-750Л(П) У3 | 750 | 10,5 | 6 | 1800 | 1405 |
УК-6,3-1125Л(П) У3 | 1125 | 6,3 | 6 | 1800 | 1405 |
УК-10,5-1125Л(П) У3 | 1125 | 10,5 | 6 | 1800 | 1405 |
Примечание.
УК — установка конденсаторная; М — модернизированная; Л — размещение ячеек ввода слева: номинальное напряжение, кВ; номинальная мощность, квар; климатическое исполнение и категория размещения.
Кому и зачем надо скупать конденсаторы
В конденсаторах больше всего платины. Вы только представьте, за килограмм конденсаторов могут отдать 50 000 рублей. Конечно же, насобирать такое большое количество конденсаторов трудно, но тот, кто хочет, как говорится, обязательно найдёт.
Помимо платины из конденсаторов можно достать и золото с серебром. И если верить Всемирной Паутине, из одной тысячи конденсаторов можно добыть порядка 20 грамм платины. Не стоит, наверное, говорить о том, какие это для многих большие деньги, ведь всего один грамм платины стоит более чем 1,5 тыс. рублей.
Наиболее всего скупщиками ценятся конденсаторы KM-5D и KM-H30. Их стоимость за один килограмм может достигать 35 тысяч рублей. Конденсаторы H902M2 стоят чуть меньше, но все равно, их тысяча штук может принести около 30 000 рублей.
Механизм и строение
Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).
Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.
Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90 доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.
Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.
Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.
Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.
Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.
Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.
По типу конструкции выпускают следующие керамические конденсаторы:
- КТК – трубчатые;
- КДК – дисковые;
- SMD – поверхностные и другие.
Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.