Какие бывают ряды номиналов резисторов?

Виды

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

  • проволочные резисторы (рис. 6);
  • композиционные;
  • металлоплёночные (рис. 7);
  • металлооксидные (характеризуются стабильностью параметров);
  • углеродные (угольный резистор);
  • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

Рис. 6. Проволочные резисторы

Рис. 7. Постоянные плёночные SMD компоненты Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номинальные ряды E6, E12 и E24[ | ]

Название ряда указывает общее число элементов в нём, то есть ряд E24 содержит 24 числа в интервале от 1 до 10, E12 — 12 чисел и т. д.

Каждый ряд соответствует определённому допуску в номиналах деталей. Так, детали из ряда E6 имеют допустимое отклонение от номинала ±20 %, из ряда E12 — ±10 %, из ряда E24 — ±5 %. Собственно, ряды устроены таким образом, что следующее значение отличается от предыдущего чуть меньше, чем на двойной допуск.

Значения номиналов для некоторых рядов приведены в таблице:Номинальные ряды E3, E6, E12, E24

E3 ±30% E6 ±20% E12 ±10% E24 ±5%
1,0 1,0 1,0 1,0
1,1
1,2 1,2
1,3
1,5 1,5 1,5
1,6
1,8 1,8
2,0
2,2 2,2 2,2 2,2
2,4
2,7 2,7
3,0
3,3 3,3 3,3
3,6
3,9 3,9
4,3
4,7 4,7 4,7 4,7
5,1
5,6 5,6
6,2
6,8 6,8 6,8
7,5
8,2 8,2
9,1

Видно, что ряд E12 получается вычёркиванием из ряда E24 каждого второго номинала, аналогично, E6 получается вычёркиванием из E12 каждого второго номинала.

См. также

10000 по 19999 10006 • 10118-3 • 10160 • 10161 • 10165 • 10179 • 10206 • 10303 • 10303-11 • 10303-21 • 10303-22 • 10303-238 • 10303-28 • 10383 • 10487 • 10585 • 10589 • 10646 • 10664 • 10746 • 10861 • 10957 • 10962 • 10967 • 11073 • 11170 • 11179 • 11404 • 11544 • 11783 • 11784 • 11785 • 11801 • 11898 • 11940 • 11941 • 11941 (TR) • 11992 • 12006 • 12164 • 12182:1998 • 12207:1995 • 12207:2008 • 12234-2 • 13211 (, ) • 13216 • 13250 • 13399 • 13406-2 • 13407 • 13450 • 13485 • 13490 • 13567 • 13568 • 13584 • 13616 • 14000 • 14031 • 14396 • 14443 • 14496-10 • 14496-14 • 14644 (, , , , , , , , ) • 14649 • 14651 • 14698 • 14698-2 • 14750 • 14882 • 14971 • 15022 • 15189 • 15288 • 15291 • 15292 • 15408 • 15444 • 15445 • 15438 • 15504 • 15511 • 15686 • 15693 • 15706 • 15706-2 • 15707 • 15897 • 15919 • 15924 • 15926 • 15926 WIP • 15930 • 16023 • 16262 • 16750 • 17024 • 17025 • 17369 • 17799 • 18000 • 18004 • 18014 • 18245 • 18629 • 18916 • 19005 • 19011 • 19092-1 • 19092-2 • 19114 • 19115 • 19439 • 19501:2005 • 19752 • 19757 • 19770 • 19775-1 • 19794-5
20000+ 20000 • 20022 • 21000 • 21047 • 21827:2002 • 22000 • 23008-2 • 23270 • 23360 • 24613 • 24707 • 25964-1 • 25178 • 26000 • 26300 • 26324 • 27000 series • 27000 • 27001 • 27002 • 27003 • 27004 • 27005 • 27006 • 27007 • 27729 • 27799 • 29199-2 • 29500 • 31000 • 32000 • 38500 • 42010 • 50001 • 80000
См. также:

Все статьи, начинающиеся с «ISO»

Ряд Е6

Здесь для обозначения номиналов содержится шесть возможных величин: 1; 1,5; 2,2; 3,3; 4,7; 6,8. При указании номинальных емкостей, сопротивлений и других характеристик радиодеталей, Е6 обладает такими отличиями:

  • величина допуска на погрешность составляет не более 20%, что дает немалое отклонение, которое обязательно следует учитывать при работе точных приборов;
  • при использовании цветовых маркировок для керамических или углеродистых резисторов, детали будут иметь черную полосу, характеризующую их возможную погрешность;


Определение допустимого отклонения по цветовой маркировке

наибольшее распространение они получили в силовом оборудовании, где основная роль резистора заключается в гашении величины токовой нагрузки, а существующая погрешность не окажет существенного влияния.

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах. Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания. Тут возникает вполне закономерный вопрос — а что это за параметр такой — номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться , что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность — это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности, тут даже особо нечего дополнительно комментировать =)

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды — сопротивление резистора равно 68 Омам. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение «1.5 К»:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим моментом

Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным

. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом

и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются нанепроволочные ипроволочные .

2.1. Непроволочные резисторы.

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки

, нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем

и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или измикрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

Номинальные ряды с большим числом элементов

Ряд E48 соответствует относительной точности ±2 %, E96 — ±1 %, E192 — ±0,5 %, этот же ряд используется и для точности 0,25% и 0,1%. Элементы этих рядов образуют геометрическую прогрессию со знаменателями 101/48 ≈ 1,04914, 101/96 ≈ 1,024275, 101/192 ≈ 1,01206483 и могут быть вычислены на калькуляторе.

Номинальные ряды E48, E96, E192
E48
E96
E192
E48
E96
E192
E48
E96
E192
E48
E96
E192
E48
E96
E192
E48
E96
E192
1,00
1,00
1,00
1,47
1,47
1,47
2,15
2,15
2,15
3,16
3,16
3,16
4,64
4,64
4,64
6,81
6,81
6,81
1,01
1,49
2,18
3,20
4,70
6,90
1,02
1,02
1,50
1,50
2,21
2,21
3,24
3,24
4,75
4,75
6,98
6,98
1,04
1,52
2,23
3,28
4,81
7,06
1,05
1,05
1,05
1,54
1,54
1,54
2,26
2,26
2,26
3,32
3,32
3,32
4,87
4,87
4,87
7,15
7,15
7,15
1,06
1,56
2,29
3,36
4,93
7,23
1,07
1,07
1,58
1,58
2,32
2,32
3,40
3,40
4,99
4,99
7,32
7,32
1,09
1,60
2,34
3,44
5,05
7,41
1,10
1,10
1,10
1,62
1,62
1,62
2,37
2,37
2,37
3,48
3,48
3,48
5,11
5,11
5,11
7,50
7,50
7,50
1,11
1,64
2,40
3,52
5,17
7,59
1,13
1,13
1,65
1,65
2,43
2,43
3,57
3,57
5,23
5,23
7,68
7,68
1,14
1,67
2,46
3,61
5,30
7,77
1,15
1,15
1,15
1,69
1,69
1,69
2,49
2,49
2,49
3,65
3,65
3,65
5,36
5,36
5,36
7,87
7,87
7,87
1,17
1,72
2,52
3,70
5,42
7,96
1,18
1,18
1,74
1,74
2,55
2,55
3,74
3,74
5,49
5,49
8,06
8,06
1,20
1,76
2,58
3,79
5,56
8,16
1,21
1,21
1,21
1,78
1,78
1,78
2,61
2,61
2,61
3,83
3,83
3,83
5,62
5,62
5,62
8,25
8,25
8,25
1,23
1,80
2,64
3,88
5,69
8,35
1,24
1,24
1,82
1,82
2,67
2,67
3,92
3,92
5,76
5,76
8,45
8,45
1,26
1,84
2,71
3,97
5,83
8,56
1,27
1,27
1,27
1,87
1,87
1,87
2,74
2,74
2,74
4,02
4,02
4,02
5,90
5,90
5,90
8,66
8,66
8,66
1,29
1,89
2,77
4,07
5,97
8,76
1,30
1,30
1,91
1,91
2,80
2,80
4,12
4,12
6,04
6,04
8,87
8,87
1,32
1,93
2,84
4,17
6,12
8,98
1,33
1,33
1,33
1,96
1,96
1,96
2,87
2,87
2,87
4,22
4,22
4,22
6,19
6,19
6,19
9,09
9,09
9,09
1,35
1,98
2,91
4,27
6,26
9,20
1,37
1,37
2,00
2,00
2,94
2,94
4,32
4,32
6,34
6,34
9,31
9,31
1,38
2,03
2,98
4,37
6,42
9,42
1,40
1,40
1,40
2,05
2,05
2,05
3,01
3,01
3,01
4,42
4,42
4,42
6,49
6,49
6,49
9,53
9,53
9,53
1,42
2,08
3,05
4,48
6,57
9,65
1,43
1,43
2,10
2,10
3,09
3,09
4,53
4,53
6,65
6,65
9,76
9,76
1,45
2,13
3,12
4,59
6,73
9,88

Это интересно: Переменный и постоянный ток — в чем разница между ними

Резистор.

Итак, начнем с основного определения резистора. Резистор – это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжение и наоборот. Ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

I = \frac{U}{R}

Резисторы являются одними из самых широко используемых компонентов. Редко можно встретить схему, в которой бы не было ни одного резистора Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Что такое ряд номиналов?

Данное понятие устанавливает определенную закономерность чередования значений для любых радиодеталей, включая и резисторы. Впервые существующий стандарт был утвержден еще в 1948году и получил обозначение латинской буквой E, означающей EIA в расшифровке Electronic Industries Alliance. Следом за буквой E указывается цифра, обозначающая конкретную линейку значений, она же показывает число доступных в этом ряду номиналов. К примеру, E6 разбивает номинальные мощности, емкости или сопротивления в пределах от 0 до 10 на шесть единиц, если сравнить с E96, то в нем этих единиц окажется уже 96.

С математической точки зрения, номинальные величины представляют собой логарифмическую функцию, поэтому шаг изменения номинальных сопротивлений можно определить по формуле:

где n – это порядковый номер конкретного члена, а N – это номер ряда.

Чтобы подобрать из предложенных линеек данных нужную модель, установленное значение, к примеру, у E12 – это 1… 1,2 … 1,5 … и т.д. и умножается на десятичный множитель – 10, 100, 1000 и т.д. до достижения желаемой величины. Всего выделяют семь стандартных номиналов, правда, первый из них сегодня уже не выпускают, но встретить в старых устройствах его вы еще можете. Далее рассмотрим особенности каждого из ряда номиналов деталей.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: