Типы резисторов

Принцип действия варистора

Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.

Рис. №1. Конструктивная схема варистора и его характеристика.

Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию ( 1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.

Таблица классификации варисторов

Кремниевые варисторы СН1.

Отечественные кремниевые варисторы выпускают типов СН1-1 и СН1-2. . Варисторы СН1 применяют для искрогашения на контактах реле и других приборов СЦБ и связи. Выбор и места установки варисторов СН1 определяются документом .

Таблица 2 Основные параметры кремниевых варисторов СН1-1 и СН1-2

Торцовые поверхности дисковых варисторов металлизируют. К слою металла припаивают токоведущие выводные электроды. Для уменьшения влияния окружающей среды на параметры варисторов их покрывают защитным изолирующим слоем. ВАХ варисторов симметричные, т. е. их сопротивление не зависит от полярности приложенного напряжения, и они могут быть применены в электрических цепях постоянного и переменного тока. Асимметрия токов не превышает ±10%. Основные параметры варисторов СН1 приведены в табл. 2. Допустимая мощность рассеяния варисторов СН1-1-1 и СН1-2-1 составляет 1 Вт, варисторов СН1-1-2 и СН1-2-2 —0,8 Вт. Классификационные напряжения варисторов СН1-1-1 и СН1-1-2 определяют при токе 10 мА, варисторов СН 1-2-1—2 мА и СН1-2-2 — 3 мА. Допустимые отклонения этих напряжений варисторов СН1-1-1 и СН1-1-2 составляют ±10%, варисторов СН1-2-1 и СН1-2-2 — ±10 и ±20%.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

  • ВС
  • ВСЕ

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

  • КИМ
  • ТВО

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву , после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Обозначение постоянного резистора

Для сопротивления от до единицу измерения не указывают, для сопротивления от до и от и выше к числовому его значению добавляют обозначения единиц измерения.

Сопротивление резистора ориентировочное

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка .

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом делается надпись « ».

Как проверить варистор?

Вот 3 способа, доступных практически каждому:

  1. Осмотр
  2. Проверить варистор мультиметром
  3. Прозвонить цепь.

Начнем с самого простого способа – посмотреть на варистор

Для доступа к нему придется разобрать бытовой прибор и очистить его от пыли. Тут вам понадобится отвертка и щеточка. Запыленность – основная проблема блоков питания. Поврежденный варистор можно обнаружить по трещинам на корпусе, вздутиям, явным признакам воздействия высоких температур. (Как минимум немного оплавленный корпус, как максимум – следы короткого замыкания).

Мультиметр

Проверить варистор мультиметром довольно просто. Выставляем на мультиметре предел измерения. Выкручиваем его на максимум, как правило это 2 мегаОма (2МОм, 2М, реже 2000К). При измерении, мультиметр должен показывать сопротивление ближе к бесконечности. Зачастую, он показывает 1-2 мегаома.

Касаться варистора руками при измерении нельзя! В таком случае мультиметр покажет вам сопротивление вашего тела, а не варистора.

Прозвон

При прозвоне придется отпаять одну из ножек варистора из цепи. Прозвон, следует осуществлять с разных направлений. Рабочий варистор не прозванивается, что понятно. Ток через него не идет. Сопротивление не позволяет.

Что написано на SMD резисторах

Для поверхностного монтажа на печатных платах обычные виды резисторов применят неудобно. Поэтому были разработаны специальные технологии, позволяющие делать их маленькими — длинной и шириной в несколько миллиметров. Это позволяет использовать площадь плат по максимуму. Но на миниатюрных резисторах даже цветовую маркировку нанести сложно. Поэтому для SMD резисторов разработана своя маркировка — цифро-буквенная. Есть три варианта этой маркировки:

  • три цифры;
  • четыре цифры;
  • три цифры и буква.

Несколько примеров того, как надо высчитывать номинал SMD резистора

Для резисторов SMD со средней погрешностью

Первые два варианта маркировки резисторов — три или четыре цифры — применяют для резисторов со средней погрешностью (допустимое отклонение 5-10%). В них первые две или три цифры — это номинал, последняя определяет множитель. Эта цифра, показывает в какую степень надо возвести 10. Для тех у кого нелады с возведением в степень, множитель прописан на рисунке ниже. Можно также сказать, что последняя цифра показывает, сколько нулей в множителе.

Правило расшифровки кодов номиналов SMD сопротивлений

Принцип нахождения номинала похож на цифро-буквенную маркировку советских резисторов. Первые две или три цифры надо умножить на множитель. Чтобы было понятнее, давайте разберем несколько примеров надписей на SMD сопротивлении. Множитель можно брать из таблицы на рисунке выше.

  • 480 — 48 надо умножить на 1, то есть это резистор на 48 Ом;
  • 313 — 31 надо умножить на 1000, получаем 31000 Ом или 31 кОм;
  • 5442 — 544 надо умножить на 100, итого 54400 Ом или 54,4 кОм;
  • 2115 — 211 с множителем 100 000, получаем 21 100 000 Ом или 21,1 МОм.

Но для маркировки низкоомных резисторов SMD — с сопротивлением менее 100 Ом — используют другую систему. Тут надо определиться с положением точки. Вместо точки ставят латинскую букву R. Пример есть на картинке ниже, разобраться несложно.

Маркировка низкоомных SMD резисторов

Если видите на корпусе резистора букву R, это значит, что номинал небольшой — не более 100 Ом. Иногда встречается вариант с буквой K. Этой буквой зашифровывают множитель 10³ или 1000. Этот тип обозначений создан по аналогии, то есть положение буквы обозначает наличие точки.

Из всех примеров разобрать стоит только K47, да еще, может быть 4K7. Остальные понять несложно. Итак, K47. Так как буква стоит перед цифрами, перед ними ставим запятую, а множитель известен — 1000. Так что получаем: 0,47 * 1000 Ом = 470 Ом. Второй пример: 4K7. Так как буква стоит между цифрами, ставим тут запятую, множитель все тот же — 1000. Получаем 4,7 * 1000 = 4700 Ом или 4,7 кОм.

Расшифровка кодов прецизионных резисторов СМД (повышенной точности)

Для резисторов поверхностного монтажа на печатных платах повышенной точности есть своя маркировка. Описана она в стандарте EIA-96. Применяется для изделий с возможными отклонениями по номиналу не более 1% (0,5%, 0,25%). На поверхности резистора стоят две цифры и одна буква (не R и не K), но значение у них другое:

две цифры обозначают код номинала (обратите внимание, не сам номинал, а его код);
буква — множитель.

Находится номинал в несколько шагов. Сначала по таблице находят код (на картинке ниже), по нему определяют номинал. По второй части таблицы находят множитель (выделен красным). Два найденных числа перемножают и получают номинал.

Таблица расшифровки кодов для SMD резисторов повышенной точности

Давайте разберем несколько примеров того, как определить номинал прецизионных резисторов SMD типа.

  • 01С. Код 01 обозначает 100 Ом, буква С — множитель 100. Итого получаем номинал: 100*100 = 10000 Ом или 10 кОм.
  • 30S. По таблице смотрим код 30. Он соответствует цифре 200. Буква S — множитель 0,01. Считаем номинал: 200 * 0,01 = 2 Ом.
  • 11D. Расшифровка кода 11 — 127, под буквой D зашифрован множитель 1000. Итого получаем 127*1000 = 127 000 Ом или 127 кОм.

В общем, принцип понятен. Ищем код, множитель, перемножаем. В общем, ничего особенно сложного. Простая математика. Если с устным счетом «не очень» помочь может калькулятор. Еще вариант — найти программу, которая расшифровывает коды резисторов.

Виды, маркировка и обозначение на схеме

Чаще всего встречаются варисторы в виде дисков (похожих на конденсаторы). Но существуют приборы, внешне выглядящие подобно обычному резистору – таков, например, отечественный элемент СН1-1.

Единых требований к маркировке элементов нет, но определенным стандартом стал следующий вид:

AAAZZXXY, где:

  • AAA – три литеры, определяющие код продукта;
  • ZZ – диаметр диска в мм (или размеры для другого исполнения).
  • XX– мантисса классификационного напряжения;
  • Y – десятичный множитель классификационного напряжения (в большинстве случаев 0 или 1, что означает, что ZZ надо умножить на 1 или на 10.

Например, для элемента TVR 10471 по расшифровке можно определить, что:

  • прибор относится к серии TVR – Thinking Varistor Resistance;
  • он представляет собой диск диаметром 10 мм;
  • приложенное напряжение в 47х10=470 вольт вызывает ток в 1 мА.

Некоторые производители укорачивают обозначение, не включая в него код продукта (например, 14N431K) или добавляют другие индексы, обозначающие серию элемента (литеры D и K у прибора 14D471K). Можно увидеть и упрощенный вариант маркировки варисторов. Так, элемент JVR10N431 может быть обозначен, как S10K275 или просто K275. Литера K означает класс точности (10%), а 275 – действующее напряжение срабатывания. Для практических целей такой вариант удобнее.

На схеме этот электронный компонент обозначается прямоугольным символом, аналогичным условно-графическому обозначению резистора, но с диагональной чертой, обозначающей непостоянство номинала (подобно терморезисторам и т.п.). Такое УГО обязательно содержит букву U – знак того, что сопротивление элемента зависит от приложенного напряжения. Это нужно, чтобы отличить варистор от других типов резисторов, чье сопротивление задает внешнее воздействие.


Два варианта условно-графического обозначения варистора.

Существует и другой вариант УГО, к символу сопротивления добавлено стилизованное изображение ВАХ защитного элемента. Это обозначение относится только к варисторам, поэтому литера U здесь не употребляется.

На схеме (и на плате) варисторы имеют индекс RU или RV (если их несколько, то RV1, RV2 и т.д.). В зарубежных изданиях встречаются обозначения на схеме с индексами MOV, ZNR и т.п.

Маркировка MOV на плате ИБП.

Принцип работы защиты варистором и схемы его включения


Фрагмент схемы входных цепей БП.

В большинстве случаев в схемах защиты варистор включается параллельно нагрузке – входным цепям блока питания, диодному мосту и т.п. Характерный пример – компьютерный блок питания. В нем варистор устанавливается до входного фильтра. При повышении напряжения выше точки срабатывания, элемент открывается и «срезает» излишний уровень.

Хорошим схемотехническим решением является включение защитного элемента после предохранителя. При опасных бросках напряжения потребляемый ток может не вырасти до уровня перегорания предохранителя. Если после плавкой вставки установить варистор, то после его срабатывания ток резко возрастет. Это способствует скорейшему сгоранию предохранителя, что служит дополнительной защитой блока питания.


Варианты схем защиты (Взято с www.joyta.ru).

Существуют и другие схемы включения защитного элемента. Кроме наиболее распространенного варианта А, защиту можно включить по схеме Б – в этом случае дополнительные элементы защитят схему при возникновении перенапряжений по отношению к земле. Также используется включение:

  • по схеме В – для защиты транзистора от выбросов при коммутации индуктивной нагрузки;
  • по схеме Г – для защиты контактов реле в схеме управления двигателем или другой индуктивной нагрузкой, где возможны опасные выбросы напряжения.

Существуют и другие варианты использования варистора, но они менее распространены.

Что написано на SMD резисторах

Для поверхностного монтажа на печатных платах обычные виды резисторов применят неудобно. Поэтому были разработаны специальные технологии, позволяющие делать их маленькими — длинной и шириной в несколько миллиметров. Это позволяет использовать площадь плат по максимуму. Но на миниатюрных резисторах даже цветовую маркировку нанести сложно. Поэтому для SMD резисторов разработана своя маркировка — цифро-буквенная. Есть три варианта этой маркировки:

  • три цифры;
  • четыре цифры;
  • три цифры и буква.

Для резисторов SMD со средней погрешностью

Первые два варианта маркировки резисторов — три или четыре цифры — применяют для резисторов со средней погрешностью (допустимое отклонение 5-10%). В них первые две или три цифры — это номинал, последняя определяет множитель. Эта цифра, показывает в какую степень надо возвести 10. Для тех у кого нелады с возведением в степень, множитель прописан на рисунке ниже. Можно также сказать, что последняя цифра показывает, сколько нулей в множителе.

Правило расшифровки кодов номиналов SMD сопротивлений

Принцип нахождения номинала похож на цифро-буквенную маркировку советских резисторов. Первые две или три цифры надо умножить на множитель. Чтобы было понятнее, давайте разберем несколько примеров надписей на SMD сопротивлении. Множитель можно брать из таблицы на рисунке выше.

  • 480 — 48 надо умножить на 1, то есть это резистор на 48 Ом;
  • 313 — 31 надо умножить на 1000, получаем 31000 Ом или 31 кОм;
  • 5442 — 544 надо умножить на 100, итого 54400 Ом или 54,4 кОм;
  • 2115 — 211 с множителем 100 000, получаем 21 100 000 Ом или 21,1 МОм.

Но для маркировки низкоомных резисторов SMD — с сопротивлением менее 100 Ом — используют другую систему. Тут надо определиться с положением точки. Вместо точки ставят латинскую букву R. Пример есть на картинке ниже, разобраться несложно.

Маркировка низкоомных SMD резисторов

Если видите на корпусе резистора букву R, это значит, что номинал небольшой — не более 100 Ом. Иногда встречается вариант с буквой K. Этой буквой зашифровывают множитель 10³ или 1000. Этот тип обозначений создан по аналогии, то есть положение буквы обозначает наличие точки.

Из всех примеров разобрать стоит только K47, да еще, может быть 4K7. Остальные понять несложно. Итак, K47. Так как буква стоит перед цифрами, перед ними ставим запятую, а множитель известен — 1000. Так что получаем: 0,47 * 1000 Ом = 470 Ом. Второй пример: 4K7. Так как буква стоит между цифрами, ставим тут запятую, множитель все тот же — 1000. Получаем 4,7 * 1000 = 4700 Ом или 4,7 кОм.

Расшифровка кодов прецизионных резисторов СМД (повышенной точности)

Для резисторов поверхностного монтажа на печатных платах повышенной точности есть своя маркировка. Описана она в стандарте EIA-96. Применяется для изделий с возможными отклонениями по номиналу не более 1% (0,5%, 0,25%). На поверхности резистора стоят две цифры и одна буква (не R и не K), но значение у них другое:

две цифры обозначают код номинала (обратите внимание, не сам номинал, а его код);
буква — множитель.

Находится номинал в несколько шагов. Сначала по таблице находят код (на картинке ниже), по нему определяют номинал. По второй части таблицы находят множитель (выделен красным). Два найденных числа перемножают и получают номинал.

Таблица расшифровки кодов для SMD резисторов повышенной точности

Давайте разберем несколько примеров того, как определить номинал прецизионных резисторов SMD типа.

  • 01С. Код 01 обозначает 100 Ом, буква С — множитель 100. Итого получаем номинал: 100*100 = 10000 Ом или 10 кОм.
  • 30S. По таблице смотрим код 30. Он соответствует цифре 200. Буква S — множитель 0,01. Считаем номинал: 200 * 0,01 = 2 Ом.
  • 11D. Расшифровка кода 11 — 127, под буквой D зашифрован множитель 1000. Итого получаем 127*1000 = 127 000 Ом или 127 кОм.

В общем, принцип понятен. Ищем код, множитель, перемножаем. В общем, ничего особенно сложного. Простая математика. Если с устным счетом «не очень» помочь может калькулятор. Еще вариант — найти программу, которая расшифровывает коды резисторов.

Принцип работы варистора

Сопротивление варистора зависит от того, какое напряжение на него поступает. Как правило, до порогового значения, сопротивление варистора велико (более 1-2 мегаОм). При переходе порогового значения напряжение, сопротивление варистора стремительно снижается. Эта особенность варистора отлично помогает в защите электроники от импульсных скачков высокого напряжения. Ведь ток импульса в таком случае идет через варистор и рассеивается в виде тепла. Однако, если пороговое значение напряжения поддерживается длительное время, то варистор перегревается и “сгорает”.

“Сгорает” в кавычках, так как варистор зачастую взрывается. Или его коротит, и тогда может произойти воспламенение. Для этого и ставят предохранитель перед варистором.

Кстати, при замене плавкого предохранителя, советуем заодно проверить и варистор. Очень часто, что выходом из строя предохранителя бывает умерший варистор. Если этого не сделать, при следующем же скачке напряжения вы рискуете большим, чем варистор и предохранитель.

Для избежания случаев возгорания в варисторы начали впаивать термисторы. Термистор поглощает излишнюю тепловую энергию, что дополнительно предохраняет вашу технику от сгорания. Такие варисторы продаются сразу в сборе.

ОСHОВHЫЕ ПАРАМЕТРЫ РЕЗИСТОРОВ

HОМИHАЛЬHОЕ СОПРОТИВЛЕHИЕ — электрическое сопротивление, значение которого обозначено на резисторе и которое является исходным для отсчета отклонений от этого значения. Фактическое сопротивление каждого резистора может отличаться и отличается от номинального, но не более чем на величину допустимого отклонения.

В радиоэлектронике для обозначения номинальных сопротивлений используются кратные Ому величины:

1 килоОм (кОм) = 103 Ом,

1 МегаОм (МОм) = 106 Ом,

1 ГигаОм (ГОм) = 109 Ом.

Резисторы, производимые промышленностью, по ГОСТу объединяются в серии и составляют номинальный ряд, который увеличивается умножением базового значения на 1, 10, 100, 1 кОм, 10 кОм, 100 кОм, 1 МОм. То есть, если в ряду единиц есть значение 3,9 , то продолжением ряда в десятках будет значение 39, в сотнях – 390, в тысячах – 3,9 кОм и т.д. Количество номинальных значений в пределах серии определяется выбранной точностью.

Например, серия Е24 содержит 24 базовых значений сопротивлений резисторов с точностью ±5%. В состав номинального ряда единиц серии входят значения:

1 ; 1,2 ; 1,5 ; 1,8 ; 2 ; 2,2 ; 2,4 ; 2,7 ; 3 ; 3,3 ; 3,6 ; 3,9 ; 4,3 ; 4,7 ; 5,1 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1.

ДОПУСТИМОЕ ОТКЛОHЕHИЕ характеризует степень разброса, отклонения от номинального значения для резисторов данного класса точности. Допустимое отклонение указывается в процентах от номинала в сторону увеличения ( + ) и в сторону уменьшения ( — ). Например, 6К2 ±5%.

HОМИHАЛЬHАЯ (допустимая) МОЩHОСТЬ рассеивания — это предельное значение мощности, которую может рассеивать резистор в виде излучаемой теплоты и при которой резистор может работать длительное время, сохраняя параметры в заданных пределах.

Мощность устанавливаемого на схему резистора, всегда должна быть в полтора – два раза больше расчетной.

ТЕМПЕРАТУРHЫЙ КОЭФФИЦИЕHТ СОПРОТИВЛЕHИЯ (ТКС) характеризует изменение сопротивления резистора относительно номинального значения при изменении температуры на один градус. Чем меньше ТКС, тем лучшей температурной стабильностью обладает резистор.

ПРЕДЕЛЬHОЕ РАБОЧЕЕ HАПРЯЖЕHИЕ — максимальное напряжение резисторов зависящее от его конструкции и размеров. При напряжении не превышающем допустимое резистор может эксплуатироваться длительное время.
Выбирая резистор для конкретной схемы, обычно учитывают:
1) требуемое значение сопротивления (Ом, кОм, МОм);
2) минимально необходимую рассеиваемую мощность резистора.

При работе резисторов в электрических цепях переменного тока высокой частоты необходимо
учитывать наличие у них собственных емкости (с) и индуктивности (c), вызывающих паразитные резонансы.

Граничная частота (гp), до которой может работать непроволочный резистор, зависит в основном от сопротивления и величины с, поскольку у таких резисторов весьма мала.

Собственные емкости большинства непроволочных резисторов широкого применения (ВС, МЛТ,
С2-6, С2-13 и т.д.) составляют 0,1…1 пФ. У проволочных
резисторов и значительно больше, поэтому их на два-три порядка ниже.

Маркировка варистора

Если же ваш варистор вышел из строя, то для его замены нам здорово поможет знание маркировки варистора. Сама маркировка располагается на корпусе и представляет собой набор латинских букв и цифр. Несмотря на разных производителей, в большинстве своем, маркировка на варисторах не сильно отличается и её вполне возможно прочитать.

В качестве примера, приведем 2 разных варистора от разных производителей:

  • CNR -12D182K
  • ZNR V12182U.

Первая цифра 12 – обозначает диаметр варистора в миллиметрах. Вторая цифра – 182К напряжение открытия. 18 – напряжение, 2- коэффициент. CNR же – обозначение материала варистора. В данном конкретном примере, варистор изготовлен из оксидов металлов.

K – используется для обозначения класса точности. То есть, если написано на корпусе варистора – 275К, то К – точность 10%, а 275 – напряжение открытия. И напряжение открытия рассчитывается так – 275 +- 27,5. То есть, например, наш варистор 20D471K можно заменить варистором TVR20471. Или любым другим аналогом варистора. Например – SAS471D20. Нужно лишь знать основные принципы маркировки.

Правда, с отечественными варисторами так не получится. Придется воспользоваться справочными материалами. Наши варисторы обозначаются так – СН2-1, ВР-1 и СН2-2. Например: CН-2 – оксидо цинковые варисторы. Но узнать это можно только из справочных материалов.

Несмотря на вышеописанные принципы маркировки, настоятельно рекомендуем пользоваться справочной литературой при выборе варистора. В ней указываются все необходимые характеристики варистора, в том числе и те, которые не узнать по маркировке.

Что делать, если у вашего варистора стерта маркировка?

Узнать, на какое напряжение рассчитан ваш варистор вам поможет мегомметр. Чтобы проверить варистор, надо подключить его к мегомметру и прогонять его по пределам. То есть, если варистор на 470В, то проверять его стоит на 500В.

Есть способ, с использованием блока питания. Правда, для этого нужен блок питания, с регулируемым напряжением и максимальной силой тока. Силу тока нужна выставить такую, чтобы варистор не сгорел. А как мы писали выше, они имеют тенденцию взрываться.

Варистор со стёртой маркировкой

Соответственно, перед подключением его следует визуально осмотреть. Если на корпусе варистора имеются трещины, вздутия, визуально видно, что он плавился – то такой варистор точно не рабочий. Но зачастую – это трещины. Материал варисторов склонен к старению, об этом всегда следует помнить. Варисторы, с такими повреждениями, можно не проверять. Они не рабочие.

Подробнее о варисторах в видео:

Последовательное и параллельное соединение резисторов

Если при конструировании
устройства отсутствует резистор с необходимым сопротивлением, но
есть резисторы других номиналов, то соединяя их последовательно или
параллельно, можно получить требуемое
сопротивление.

Последовательное соединение резисторов

Рис. 6 — Последовательное соединение резисторов

При последовательном соединении резисторов их общее сопротивление Rпос
увеличивается и определяется по формуле:

Например для резисторов 1 кОм и 10 кОм:

Параллельное соединение резисторов

Рис. 7 — Параллельное соединение резисторов

При параллельном соединении резисторов их общее сопротивление Rnap
уменьшается и всегда меньше сопротивления каждого отдельно взятого
резистора и определяется по формуле:

Для двух соединяемых
параллельно резисторов формула приобретает вид:

Например для резисторов 1 кОм и 10 кОм:

Плюсы использования варистора

Варистор – он как автомат калашникова. Прост, надежен, дешев. И распространен повсеместно. Он всегда сработает и не подведет. Область его применения огромна. Как мы выше писали от 20кВ до 3В. Ну и про время срабатывания забывать не стоит. 25нс у среднего варистора – весьма неплохо. А есть экземпляры, со скоростью срабатывания ниже 0,5 не.

Но, как и у всего в этом мире, у варистора есть и недостатки. К таковым относится низкочастотных шум во время работы, большая емкость варистора (от 70 до 3000 пФ) и склонность материалов варистора к устареванию. Плюсы варистора превалируют над минусами. Именно поэтому он получил столь широкое распространение. Как и автомат калашникова.

Для чего нужен варистор, где применяется

Принцип работы этого прибора несложен. Если к нему приложено напряжение, не превышающее определенного порога, его сопротивление велико, ток через него определяется утечками и составляет порядка единиц или десятков микроампер. При увеличении приложенного напряжения варистор открывается и начинает проводить ток. Этот участок характеристики практически линеен и аналогичен резистору с небольшим сопротивлением. Если напряжение повышать далее, ток будет расти, и в итоге элемент выйдет из строя.


Вольт-амперная характеристика варистора.

Варистор работает при любой полярности напряжения, поэтому, при внимательном рассмотрении, его вольт-амперная характеристика подобна ВАХ двуханодного стабилитрона. Это означает, что резистор, управляемый напряжением, работает схожим образом – при превышении определенного уровня он стабилизирует напряжение на выводах. Это можно использовать для защиты от перенапряжений. ВАХ прибора симметрична, поэтому он работает как при постоянном, так и при переменном напряжении.

Выбор варистора

Чтобы эффективно и гарантированно защитить вашу технику, к выбору варистора необходимо подойти с умом. Как правило, для защиты бытовой техники используют варисторы с пороговым значением напряжения от 275 до 430 В. Особо углубляться в подбор варисторов с учетом других значений (емкость и т.п) мы вдаваться не будем. Тут есть множество нюансов, которые в формате этой статьи просто не удастся рассмотреть. Для более точного подбора варистора можем посоветовать использование справочников по варисторам. В них указаны все характеристики, которыми обладает тот или иной варистор. Что позволит вам выбрать наиболее подходящий для ваших целей и задач.

Еще одним важным параметром при выборе варистора является скорость срабатывания. Как правило, у большинства варисторов она составляет около 25 нс. Но не всегда этого хватает.

Тогда вам подойдут варисторы с меньшим временем срабатывания. Недостижимым идеалом по скорости срабатывания являются варисторы, изготовленные по технологии многослойной структуры SIOV-CN. Их скорость срабатывания может составлять менее 1 не.

Такие варисторы необходимы для защиты от статического электричества. В бытовой технике, такие варисторы практически не применяются.

Слышали, наверно, про случаи, когда сразу у множества людей сгорала электроника? Это происходит как раз из-за того, что по проводам идет только фаза. Варистор предохраняет и от этого.

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • – линейная зависимость
  • – логарифмическая
  • – показательная зависимость

Регулируемый резистор с двумя дополнительными отводами

Сдвоенный переменный резистор

Двойной переменный резистор

Регулируемый резистор с выключателем

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: