Тиристор КУ103А

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров

Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

АОУ103А, АОУ103Б, АОУ103В

АОУ103А, АОУ103Б, АОУ103В

Оптопары тиристорные, состоящие из излучающего диода на основе арсенид-галлий-алюминия и кремниевого тиристора, предназначены для использования в качестве управляемого ключа в узлах радиоэлектронной аппаратуры, в которых требуется гальваническая развязка между выходной цепью и цепями управления.

Масса прибора не более 1,2 г.

Электрические параметры
Прямое напряжение выходной цепи, не менее:  
АОУ103А 50 В
АОУ103Б, АОУ103В 200 В
Обратное напряжение выходной цепи, не менее:  
АОУ103В 200 В
АОУ103А, АОУ103Б Не нормируется
Номинальный входной ток включения при прямом напряжении на запертом тиристоре 10 В:  
АОУ103А, АОУ103В 20 мА
АОУ103Б 50 мА
Ток выключения, не более 10 мА
Остаточное напряжение, не более 2 В
Ток утечки в выходной цепи запертою тиристора, не более 100 мкА
Время включения, не более 15 мкс
Время выключения, не более 100 мкс
Предельные эксплуатационные данные
Входной ток при температуре от 213 до 343 К 55 мА
Входное напряжение при температуре от 213 до 343 К 2 В
Ток помехи при температуре от 213 до 343 К 0,5 мА
Постоянный прямой ток в выходной цепи при температуре:  
от 213 до 323 К 100 мА
при 343 К 20 мА
Скорость изменения напряжения, прикладываемого к выходной цепи, не более 5 В/мкс
Температура окружающей среды От 213 до 343 К

Зона возможных положений зависимости входного тока от входного напряжения.

Зона возможных положений зависимости напряжения в открытом состоянии от температуры.

Зона возможных положений зависимости тока удержания от температуры.

Зона возможных положений зависимости времени включения от входного тока.

Зона возможных положений зависимости отпирающего тока управляющего электрода от температуры.

Зона возможных положений зависимости времени выключения от выходного тока.

Современная симисторная схема регулятора

Ниже приведена современная принципиальная электрическая схема симисторного регулятора мощности. Для того, чтобы разобраться в принципе работы регулятора мощности на симисторе нужно представлять, как он работает.

Симисторы в отличии от тиристоров, могут работать не только в цепях постоянного тока, а и переменного. В этом их главное отличие. Симистор также работает в ключевом режиме – или открыт, или закрыт. Для открытия перехода А1-А2 нужно подать на управляющий электрод G напряжение величиной 2-5 В относительно вывода А1. Симистор откроется и не закроется до тех пор, пока напряжение между выводами А1-А2 не станет равным нулю.

Работает схема симисторного регулятора мощности следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника) на вывод А1 симистора VS2 и один из выводов R2. При нахождении среднего вывода резистора R2 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 быстро заряжаться. Когда С1 зарядится до напряжения 30 В произойдет пробой динистора VS1 и ток пойдет на управляющий электрод G VS2 и переход симистора А1-А2 откроется (график 1).

При повороте ручки переменного резистора R2, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 30 В. Поэтому симистор откроется через некоторое время. Чем больше будет величина R2, тем больше будет время заряда С1 и симистор будет открываться с большей задержкой. Таким образом на нагрузку будет поступать меньше энергии.

Приведенная классическая схема симисторного регулятора мощности может работать и при напряжении сети 127, 24 или 12 В. Достаточно только уменьшить номинал переменного резистора. В приведенной схеме мощность регулируется не от 0 вольт, а от 30, что более чем достаточно для практического применения. Это схема была успешно повторена при ремонте электронной схемы управления скоростью вращения электродвигателя блендера.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

2У103В, КУ103А, КУ103Б

2У103В, КУ103А, КУ103Б

Тиристоры кремниевые, мезапланарные, p-типа, триодные, незапираемые. Предназначены для применения в качестве переключающих элементов малой мощности. Выпускаются в металлостеклянном корпусе с гибкими выводами. Тип прибора приводится на корпусе. Со стороны катодного вывода ставится маркировочная точка.

Масса тиристора не более 2,5 г.

Электрические параметры
Напряжение в открытом состоянии при Iос=1 мА и Iу.от=10 мА, не более:  
при Т=+25°С 3 В
при Т=-60°С для 2У103В 10 В
при Т=—45°С для КУ103А, КУ103Б 10 В
Отпирающее импульсное напряжение управления при Iос.и=1 мА, Uэс.и=Uэс.макс, Iу.от=10 мА и f=50 Гц:  
при Т=—60…+70°С для 2У103В 0,4…2 В
при Т=—45…+85°С для КУ103А, КУ103Б 0,3…2 В
Постоянный ток в закрытом состоянии при Uэс.и=Uэс.макс и обратный ток при Uобр=Uобр.макс, не более:  
при Т=+25°С:  
2У103В 0,15 мА
КУ103А, КУ103Б 0,2 мА
при Т=—60°С для 2У103В 0,15 мА
при Т=-45°С для КУ103А, КУ103Б 0,35 мА
при Т=+70°С для 2У103В 0,25 мА
при Т=+85°С для КУ103А, КУ103Б 0,45 мА
Общая емкость при Uэс=0 и f=5 МГц, не более 50 пФ
Предельные эксплуатационные данные
Постоянное напряжение в закрытом состоянии и постоянное обратное напряжение:  
2У103В 300 В
КУ103А, КУ103Б 150 В
Обратное постоянное напряжение управления 2 В
Средний ток в открытом состоянии 1 мА
Средний обратный ток 1 мА
Прямой постоянный ток управления 40 мА
Средняя рассеиваемая мощность 150 мВт
Диапазон рабочих частот коммутируемых сигналов 50…10000 Гц
Температура окружающей среды:  
2У103В —60…+70°С
КУ103А, КУ103Б —45…+85°С

Зависимость напряжения в открытом состоянии от температуры

Для повышения надежности тиристоров необходимо предусматривать включение между управляющим электродом и катодом шунта сопротивлением не более 1 кОм.

Включение тиристора в различные цепи управления » Портал инженера

В современных схемах радиоэлектроники для управления силовыми цепями все чаще применяются тиристоры и семисторы. Применение электромагнитных реле становится не модным и ненадежным. У электромагнитных реле имеется большой недостаток, у них есть движущиеся части, вследствии из этого они имеют ограниченное количество циклов срабатывания.

Преимуществом тиристоров является высокая надежность, малые токи управления, большие токи в силовых цепях, небольшая стоимость самого тиристора. Теперь давайте рассмотрим как включаются тиристоры и семисторы в различные низковольтные схемы для комутации больших токов.

Простая схема включения тиристора приведена на рис.1. На схеме показано включение транзисторной оптопары АОТ128А. В данной схеме включения тиристора, тиристор переходит в открытое состояние когда напряжение на входе 1 оптопары достигает 1,8-2,5В силой така 5-7мА. Небольшой недостатой включения тиристора через диодный мост – это потери напряжения на нем, порядка 20В. Свечение лампы по данной схеме будет четь тускнее нежели при прямом включении.

рис.1 Схема включения тиристора в паре с транзисторной оптопарой

На рисунке 2 показана схема включения тиристора через транзистор. Управляющий ток проходящий через резистор R2 невелик и составляе не более 30мА. Условие выбора транзистора должно быть следующим, что бы максимальное напряжение коллектор эмитер было не менее 300В.

рис.2 схема включения тиристора через транзистор

На следующем рисунке показано включением семистора в силовую цепь с управлением от оптоэлектронного прибора. Данная схема может работать как в сетях переменного, так и постоянного тока. Управляющий ток данной схемы не превышает 5мА, амплитуда напряжения управления от 1,5 до 2В. При таких незначительных параметрах управления семистор КУ208Г способен комутировать нагрузку мощностью до 0,6 кВт. Для управления более мощной нагрузкой, например до 1 кВт, семистор необходимо установить на радиатор.

Для управления цепью более 200В подойдет только оптопара АОУ103В, для управления более меньшими напряжениями можно применять оптопары с другими буквами: А-до 50В, Б-до 100В.

рис,3 Включение семистора КУ208Г с оптоэлектронным прибором АОУ103В

На следующем рисунке показана схема подключения оптосемистора непосредственно к диоганали моста. Ток управления оптосимистором состовляет около 10мА, напряжение 2-3В.

рис.4 Схема включения оптосемистора ТО132-40, ТО125-12,5 к диогонали моста

На нижеприведенной схеме показано включение семистора КУ208 через ограничительное сопротивление и выключатель. Данная схема часто применяется для дистанционного управления. Схема может использоваться как узел более сложного устройства.

В данной схеме задействованы тиристорная оптопара и оптосемистор. Данная схема обладает преимуществами обеих, ранее рассмотренных схем.

рис.6 Электрическая схема гибридного управления нагрузкой

Нижеприведенная схема предназначена для управления мощной нагрузкой. Силовым ключем служит семистор ТС171-250, а промежуточным МОС3009, МОС3010 или МОС3012. Данная схема может комутировать нагрузку более одного 1 кВт с током управления не более 10мА.

рис.7 Электрическая схема узла управления мощной нагрузкой

Схема устройства предназначена для комутации нагрузки до 600Вт. Может управлять напряжением до 350В. Оптопара самостоятельно может управлять нагрузкой не более 100мА, поэтому в цепь включен семистор КУ208Г.

рис.8 Электрическая схема оптоэлектронной развязки

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, чтобы понять, как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

—>Автозапчасти и СТО —>

Предлагаю вашему вниманию простое зарядное устройство с использованием тиристора, которое под силам собрать своими рукамидаже начинающему радиолюбителю. Его можно использовать как самостоятельное устройство, так и в дополнение к существующему зарядному устройству, так как в схеме реализовано несколько типов защит. Имеется защита от короткого замыкания, так как без подключённого аккумулятора на выходе отсутствует выходное напряжение. Так же устройство не выйдет из строя при неправильном подключении батареи, транзистор откроет тиристор только при правильном подключенииаккумулятора. Трансформатор берём готовый или мотаем сами, мощностью 150-200 ватт, вторичная обмотка с напряжением 16-19 вольт. Вместо указанных на схеме тиристора и транзистора можно поставить соответственно КУ202 с любым буквенным индексом и КТ815. Резистором R4 подбирают минимальное напряжение включения зарядки, схема рассчитана на аккумуляторную батарею 12 вольт. Перед включением обязательно проверить правильность монтажа. Рекомендую, отличная вещь против ошибок.

По желанию, на выходе схемы к АКБ, можно добавить вольтметр и амперметр. Вольтметр подключается параллельно нагрузке, а амперметр последовательно, через линию «+».

Диодный мост рекомендую выполнить на диодах Д242

Нажмите на изображение чтобы увеличить

Аналоги транзистора КТ815

Транзистор КТ 815 возможно заменить на отечественный аналог: КТ8272, КТ961, либо на его зарубежный аналог: BD135, BD137, BD139, TIP29A

Основные технические характеристики диодов Д242, Д242А, Д242Б:

Диод Uпр/Iпр Ioбр t вос обр Uобр max Uобр имп max Iпр max Iпр имп max fд max Т
В/А мА мкс В В А А пФ кГц °C
Д242 1,25/10 3 100 10 1,1 -60. +130
Д242А 1,0/10 3 100 10 1,1 -60. +130
Д242Б 1,5/5 3 100 5 1,1 -60. +130

Аналоги тиристора КУ 202

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: