Долговечность ламп в HAM PA
Введение
Это статья является результатом анализа профессиональных работ по вакуумной
технике, большая часть которых является относительно современными (во всяком
случае они 21 века, а не полувековой давности, т.е. отражают нынешний уровень
понимания проблемы).
Из них взяты выводы, общие рекомендации, методики расчета и исходные
данные. Я же сделал расчеты и выжимку существенного применительно к
единственному случаю: мощному ламповому РА, работающему на КВ или УКВ.
Делал это потому, что условия эксплуатации лампы в РА радиолюбителями и в
промышленном передатчике инженерами (для которых и пишутся профессиональные
книги) отличаются существенно.
РА работает на передачу относительно редко, много времени находится в дежурном режиме,
а еще больше выключен вообще (средняя наработка лампы в любительском РА ~500
часов в год ). Контроль состояния лампы обычно никакой («как-то мощность
отдает, не стреляет и ладно»). Часто используются старые лампы с истекшим
сроком хранения, ухудшенным вакуумом и сниженной эмиссией.
В промышленных передатчиках лампа, как правило, работает непрерывно,
нарабатывая несколько тысяч часов в год и выключаясь редко. Но зато лампы там
относительно новые, с гарантией производителя и регулярным
техническим контролем.
Здесь и далее речь идет только о работе и долговечности ламп
в радиолюбительском КВ или УКВ PA. Имеется в виду выполнение всех
четырех следующих условий:
-
выходная мощность от несколько сотен ватт до единиц кВт.
-
Реализована корректная последовательность подачи питающих
напряжений: сначала только накал несколько минут (зависит от типа
лампы), затем (или одновременно с накалом) смещение первой сетки,
потом анодное напряжение и, если есть вторая сетка, последним подается
ее смещение. -
Соотношение времени прием/передача не меньше 1, типично 3 … 10, но
может быть и значительно больше (например, при «взятии»
DXpedition на нужном диапазоне, когда
время передачи за всю ночь может быть всего несколько минут). -
Анодное напряжение не снимается в режиме «Обход», когда РА
не используется, но включен. Ведь DX в кластере может появиться в любой
момент и РА должен быть готов к работе практически сразу после выключения
режима «Обход». А отключение анодного напряжения (если не
применять дорогое высоковольтное реле) можно только отключением
высоковольтного БП от сети, что и сложно (требуется реле на
большой ток), и занимает время при включении ( для сглаживания броска
тока при заряде конденсатора выпрямителя), и, как мы увидим дальше,
не дает каких-либо преимуществ.
Описание процессов в лампе предельно упрощено (но без искажения сути). Иначе
пришлось бы закопаться в сложную взаимосвязь множества разных процессов. А цель
этой статьи – минимально необходимое понимание влияния на долговечность
условий эксплуатации и предпринимаемых нами действий.
12Ж1Л
В триоде Мю-20 ; S-2,5mA/V ; Ri-8k
EL34
Для раздумий; внутреннее сопротивление EL34 в триодном вкл. порядка 1,2к, УЛ — 7-8к, пентод — 16-18к.
Sapienti sat.
Гэгэн
Для ламп 6С3П в ФИ:
Ea-380V, Ua-145V, Ia-12mA, Ra-18k, Uk-1,5V, Rk общ-620 Ом.
———————————————
6С4С
Пример для 6С4С.
при 2,5к по 2й гармонике 4% третьей 0,1%, выходная мощность 2,85Вт
при 2,8к по 2й гармонике 3,75%, третьей 0%, выходная мощность 2,7Вт
при 3к по 2й гармонике 3,5%, третьей 0%, выходная мощность 2,6Вт
При 3,2к по 2й гармонике 3,4% третьей 0% выходноы мощность 2,5Вт
При 3,5к по 2й гармонике 3,3%, третьей 0,1%, выходная мощность 2,4Вт
при 4к по 2й гармонике 3%, третьей 0,2%, выходная мощность 2,2Вт
при 6к по 2й гармонике 2,4% третьей 0,25%, выходная мощность 1,75вт
При 8к по 2й гармонике 2% третьей 0,3%, выходная мощность 1,3Вт.
При 10к по 2й гармонике 1,8% Третьей 0,33% выходная мощность 1,1Вт
6П36С
4,5к — внутреннее сопротивление 6П36С в ТЕТРОДНОМ ВКЛ. В ТРИОДНОМ порядка 0,65к
Выходное сопротивление SRPP каскада на лампах 6П36 в триодном вкл ~ 180 Ом.
Наибольшая выходная мощность при Rn=2*Rвых = 350-400 Ом.
Комфортная при Rn=3*Rвых. (Ra -600 Om)
Гэгэн
6Ф5П (мю триода — 70), 6Ф4П (65), 6Ф3П (75)
6Ф3П Ктр=31. (Ra=8КОм/8Ом, или 4КОм/4Ома)
——————————————————————————-
SE Трансформатор на железе ОСМ1-0,16
———————————————
Лaмпы in triod: 6Ф3/5П, 6П18/43П, 6П13C/31C/41C, 6LR8, 6KY8.
>> Железо ШЛ32 х 40. Окно 55х19
>> Габариты намотки примерно 49 х 15
Ra-5k, Rn-8 Ohm.
Первичная обмотка
Провод 0,25, в изоляции — 0,3
К-во витков в слое 155
Коэффициент заполнения — 0,95.
к-во слоёв и секций — 4-5-5-4
общее к-во слоёв — 18, витков — 2790
Коэффициент трансформации 24
Вторичная обмотка — 122 витка
Провод 0,7, в изоляции 0,75 в секции два слоя по 61 виток.
Количество секций — 3, соединение параллельное
Порядок намотки 1-2-1-2-1-2-1
Габарит намотки
0,3*18=5,4
0,75*6=4,5
Бумага 20*0,05=1
Общ — 11
Коэффициент вспучивания 1,3.
Высота намотки 11*1,3=14,3 при габарите 15мМ.
Зазор
0,1мМ при токе 50мА
0,12мМ 60мА.
0,15мМ до 80мА
===============
6Э5П
Зелёная нагр. прямая — 1,8Вт
Синяя нагр прямая — 1,5Вт.
Лиловая нагр. прямая — 1,2Вт.
Без учёта КПД однотактного выходного трансформатора.
Для 6Э5П в тетродном вкл, Ri=8k, рабочая точка; Ua=160V, Ug2=150V, Ia=50mA, Ug1=-1,75V; Ra=3k.
Коэффициент динамич усиления ~60.
Если трансформатор 1:1, нагрузка вторички — 2,7-3к, если 1:0,5 — 1,35-1,5к.
При нормальном трансе такой каскад вполне линеен по АЧХ
Параллельно первичке никакого доп. резистора не нужно, разве что, на всяк. случай цепь Цобеля 10к — 3-5нФ. (Гэгэн)
6Ф1П
Рубрики
- new
- Авторские статьи
- Акустические системы
- Гитарные усилители
- Ламповые радиоприёмники
- Ламповый фонокорректор
- Микрофонный усилитель
- Питание
- Питание усилителей
- Программы
- Программы для Аудио
-
Радиолампы
-
Октальные
- Пентоды
- Тетроды
- Триоды
-
Пальчиковые
- Пентоды
-
Триоды
Двойные триоды
-
Октальные
-
Схемы усилителей
- Гибридные усилители
-
Ламповые
- Трансформаторы для ламповых усилителей
- Усилители PP
-
Усилители SE
Усилители для наушников
-
Предварительные усилители, тембра, эквалайзеры
Ламповые тембра
-
Транзисторные
- Транзисторные класса «AB»
- Транзисторные класса «А»
- Усилители на IGBT транзисторах
- Усилители для наушников ламповые
- Усилитель для наушников
- Фазоинверторы
- Фонокорректоры
Архивы
- Март 2023
- Февраль 2023
- Январь 2023
- Май 2022
- Март 2022
- Январь 2022
- Декабрь 2021
- Ноябрь 2021
- Сентябрь 2021
- Август 2021
- Август 2020
- Ноябрь 2019
- Февраль 2019
- Январь 2019
- Ноябрь 2018
- Август 2018
- Июль 2018
- Июнь 2018
- Апрель 2018
- Март 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017
- Июль 2017
- Июнь 2017
- Май 2017
- Апрель 2017
- Март 2017
- Февраль 2017
- Декабрь 2016
- Ноябрь 2016
- Октябрь 2016
- Сентябрь 2016
- Август 2016
- Июль 2016
- Июнь 2016
- Май 2016
- Апрель 2016
- Февраль 2016
- Январь 2016
- Декабрь 2015
- Ноябрь 2015
- Октябрь 2015
- Август 2015
- Июль 2015
- Июнь 2015
- Май 2015
- Апрель 2015
- Март 2015
- Февраль 2015
- Январь 2015
- Декабрь 2014
- Ноябрь 2014
Основные характеристики
Для работы 6Н2П используется постоянное или переменное напряжение накала в диапазоне от 5,7 до 6,3 В. Занижение или завышение указанного параметра приводит со временем к разрушению катода. Поэтому желательно, чтобы питание было стабилизировано и обеспечивало мягкое включение. Лучше, чтобы оно не превышало нижних паспортных значений, что в конечном итоге может значительно продлит срок службы лампы.
Эксплуатационные данные
Приведём основные эксплуатационные характеристики 6Н2П:
- напряжение:
- нити накала от 5,7 до 7,0 В;
- постоянное анодное от 250 В (номинальное) до 300 В;
- между катодом и подогревателем – до 100 В; между анодами– до 2 В;
- сетки — минус 1,5 В (постоянное);
- ток:
- нити накала — 340 ±25 мА;
- катода — до 10 мА;
- анода – 2,3 ±0,9 мА;
- рассеиваемая мощность одним анодом –до 1 Вт (максимальная);
- сопротивление в цепи сетки – 0,5 Мом (максимальное);
ёмкость:
- между анодами– не более 0,15 пФ;
- между катодом и подогревателем – не более 5 пФ;
- емкость (у каждого триода): входная — 2,35 ±0,35 пФ; выходная 2,5 ±0,5 пФ; проходная – 0,7 … 0,8 пФ;
- крутизна характеристики – 2,1 +0,5 мА/В (каждого триода);
- коэффициент усиления – 97,5 ± 17,5 (каждого триода).
Стоит отметить, что данные параметры указаны производителем в техническом описании (datasheet) исключительно для лампы прогретой до рабочего состояния. При подключении нити накала к переменному току, для уменьшения фона на 25-30 дБ, рекомендовано между катодом и подогревателем подавать не более ±10 В.
Аналоги
Общеизвестно, что у 6Н2П есть хороший зарубежный аналог, послуживший прототипом для её создания — 12AX7WA. Однако у последней все же немного другие параметры, и даже при поверхностном рассмотрении datasheet видны отличия в значениях напряжения нити накала и распиновки. Несмотря на такие несоответствия многие любители гитарной музыки, в поисках лучшего звучания своих усилителей, применяют эти лампы в качестве замены.
В подобных случаях можно рекомендовать европейские версии ЕСС83, ECC89 от компании Tesla, которые ничем не хуже американки. К сожалению такие радиолампы, как и 12AX7WA, в настоящее время достаточно трудно найти в российских магазинах и к тому же они очень дорого стоят. Поэтому некоторые радиолюбители дорабатывают для установки вместо них советские 6Н2П. Пример подобной доработки показан в видеоролике.
На многих интернет-форумах обсуждается возможная замена 6Н2П на 6Н3П, ведутся споры какая лампа лучше. Однако две эти радиолампы разные по своим характеристикам. К тому же, у последней более низкий коэффициент усиления по току и другая цоколевка. В большинстве случаев замена одного устройства на другое потребует глубокой переработки существующей схемы.
Полным отечественным аналогом обычно можно назвать 6Н2П-ЕП — это более поздняя модификация рассмотренной лампы считается хорошей альтернативой. Функциональным аналогом считается 6Н9С, которая полностью идентична по параметрам, но расположение выводов у неё все же отличается. Для установки последней взамен 6Н2П надо придумывать переходник или перепаивать схему.