Тиристоры ку 202 характеристики

Эквивалент инжекционно-полевого транзистора

Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.

Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.

Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.

Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.

Recommended Posts

Для улучшения контакта работающих элементов с радиатором, нужно использовать теплопроводные пасты. Для этой цели и предназначается зарядные устройства.

Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.

В схеме применяется транзистор с большим коэффициентом усиления Спасибо за ответ.

Вместо NE можно использовать российский аналог — таймер ВИ1. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Что же тогда тупит.

Самоделки, хобби, увлечения.

Включите устройство зарядное в сеть, при этом должен включиться индикатор. Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора.

‘).f(b.get(,!1),b,»h»,).w(«

Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи. Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1

Обратите внимание, что в схеме стоит тиристор КУ, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор

А Для подзарядки применяется напряжение сети в В. Восстановление и зарядка аккумулятора. Зарядное устройство на тиристоре

Эквивалент тиристора

Тиристоры, динисторы и им подобные элементы способны при весьма незначительных внутренних потерях управлять большими мощностями, подводимыми к нагрузке.

Тиристоры — приборы, обладающие двумя устойчивыми состояниями: состоянием низкой проводимости (проводимость отсутствует, прибор заперт) и состоянием высокой проводимости (проводимость близка к нулю, прибор открыт). Представители класса тиристоров :

  • диодные тиристоры (динисторы, диаки), имеющие два вывода (анод и катод), управляемые путем подачи на электроды напряжения с высокой скоростью его нарастания или повышения приложенного напряжения до величины, близкой к критической;
  • триодные тиристоры (тринисторы, триаки), трехэлектродные элементы, управляющий электрод которых служит для перевода тиристора из закрытого состояния в открытое;
  • тетродные тиристоры, имеющие два управляющих электрода;
  • симметричные тиристоры — симисторы, имеющие пятислой-ную структуру. Иногда этот полупроводниковый прибор называют семистором.

Диодные тиристоры (динисторы), ассортимент которых не столь велик, различаются, главным образом, максимально допустимым постоянным прямым напряжением в закрытом состоянии.

Так, для динисторов типов КН102А, Б, В, Г, Д, Е, Ж, И (2Н102А — И) значения этих напряжений составляют, соответственно, 5, 7, 10, 14, 20, 30, 40, 50 В при обратном токе не более 0,5 мА. Максимально допустимый постоянный ток в открытом состоянии для этих полупроводниковых приборов равен 0,2 А при остаточном напряжении в открытом состоянии 1,5 В.

На рис. 1 приведена эквивалентная схема низковольтного динистора. Если принять R1=R3=100 Ом, можно получить динистор с управляемым (с помощью резистора R2) напряжением переключения от 1 до 25 В [Войцеховский Я., Р 11/73-40, Р 12/76-29]. При отсутствии этого резистора и при условии R1=R3=5,1 кОм напряжение переключения составит 9 Б, а при R1=R3=3 кОм —12 В.

Аналог тиристора р-п-р-п-структуры, описанный в книге Я. Войцеховского, показан на рис. 2. Буквой А обозначен анод; К — катод; УЭ — управляющий электрод. В схемах (рис. 1, 2) могут быть использованы транзисторы типов КТ315 и КТ361.

Необходимо лишь, чтобы подводимое к полупроводниковому прибору или его аналогу напряжение не превышало предельных паспортных значений. В таблице (рис. 2) показано, какими величинами R1 и R2 следует руководствоваться при создании аналога тиристора на основе германиевых или кремниевых транзисторов.

Рис. 2. Аналог тиристора.

В разрывы электрической цепи, показанные на схеме (рис. 2) крестиками, можно включить диоды, позволяющие влиять на вид вольт-амперной характеристики аналога. В отличие от обычного тиристора, его аналогом (рис. 2) можно управлять, используя дополнительный вывод — управляющий электрод УЭдоп, подключенный к базе транзистора VT2 (верхний рисунок) или VT1 (нижний рисунок).

Обычно тиристор включают кратковременной подачей напряжения на управляющий электрод УЭ. При подаче напряжения на электрод УЭдоп тиристор, напротив, можно перевести из включенного состояния в выключенное.

Схема эквивалента варикапа

Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения.

Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис. 11), а также их полупроводниковые аналоги (рис. 12 [F 9/73-434], рис. 13 [ПТЭ 2/81-151]).

Рис. 12. Схема аналога варикапа.

Рис. 13. Схема аналога варикапа на основе полевого транзистора.

Литература: Шустов М.А. Практическая схемотехника (Книга 1).

  • PCBWay – всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay!

ВНИМАНИЕ! В оригинале в книге на рисунках 1 и 2 была обнаружена ошибка: к Аноду включен N-P-N транзистор, вместо PNP. В текущей статье, на рисунках, ошибки исправлены! Нашел ошибки и оповестил нас о них – Иван Иванович

Динистор лучше заменить на тиристор и стабилитрон или цепочка стабилитронов с анода на управляющий, проверено – работает надежно, искать транзисторы PNP на 250-300v проблемотично.

НИколай,можно раскурочить парочку сгоревших зарубежных телеков,покопаться в строчной развертке,взять оттуда выходные транзисторы(насколько помню,они там прямой проводимости).Если же нет,можно сделать аналог npn транзистора из нескольких pnp транзисторов.Раскрою принцип действия заменяющей цепочки.При подаче на базу транзистора прямой проводимости pnp структуры отрицательного импульса он открывается.Транзистор обратной проводимости npn структуры закрывается.Так,закрывая один транзистор можно открывать другой,имитируя работу транзистора прямой проводимости.При этом,правда,увеличивается емкость коллектора,но ее можно компенсировать,введя обратную связь.При этом правда,уменьшается коэффициент усиления,но это можно исправить увеличением числа каскадов.

Так же можно присмотреться и к ключу в блоке питания.

Применение симисторных регуляторов в быту

Подобные устройства применяются в быту везде, где есть необходимость плавно изменять мощность прибора или инструмента. В целом, работает такая схема по принципу снижения сетевого напряжения 230 В. А если напряжение питания электроприбора уменьшать, то пропорционально будет изменяться и его мощность.

А вот если уменьшить мощность такого паяльника, то перечисленные проблемы исчезнут. Сделать это можно путем снижения напряжения его питания с 230 В до, например, 80 В (почти в три раза). А поскольку мощность (а также температура нагрева жала) снижается пропорционально, то в итоге мы получим паяльник на 25-30 Вт. Симисторные регуляторы применяются для плавного изменения мощности:

  • паяльников (именно для паяльника было сделано описанное в статье устройство);
  • электрических сушилок для фруктов;
  • утюгов;
  • обогревателей;
  • других нагревательных приборов;
  • пылесосов;
  • электроинструментов – болгарок, орбитальных шлифовальных машинок, лобзиков;
  • другого оборудования с двигателями – точильных станков, сверлильных и прочих;
  • ламп накаливания.

Читать также: Подключение встраиваемого духового шкафа и варочной панели

Касательно последнего пункта стоит отметить, что именно такая схема симисторного регулятора не очень подходит. Но и об этом подробнее сказано ниже.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

READ Как установить систему с образа системы

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: