Шумы операционного усилителя: неинвертирующая схема
Давайте рассмотрим некоторые базовые основы шумов усилителя с учетом особенностей, выявленных в предыдущей части. Неинвертирующая схема усилителя является наиболее распространенной для малошумящих приложений, поэтому я сосредоточусь именно на ней.
Модель источника входного сигнала на рисунке 58 представлена в виде источника шумового напряжения с последовательным сопротивлением RS. Известно, что сопротивление RS обладает собственным шумом, пропорциональным корню сопротивления (прямая линия на рисунке 59). Цель малошумящего усилителя состоит в том, чтобы добавлять как можно меньше дополнительного шума к уже имеющемуся шуму источника сигнала.
Рис. 58. Шумовая модель усилителя
Шумовая модель усилителя включает в себя источник шумового напряжения, подключенный последовательно с одним из входов, и пару источников шумового тока, подключенных к каждому из входов (рисунок 58). Рассматривайте шумовое напряжение как изменяющийся во времени компонент напряжения смещения. Аналогичным образом шумовой ток представляет собой переменную составляющую входного тока смещения. Для этой схемы можно игнорировать шумовой ток на инвертирующем входе – его влияние, как правило, можно минимизировать.
На рисунке 59 показан общий приведенный ко входу шум для двух операционных усилителей: шум биполярного ОУ OPA209 и шум ОУ OPA140 с JFET-входами. Значения шумов показаны относительно величины сопротивления источника сигнала при 25°C. Для каждого операционного усилителя три источника шума складываются как корень из суммы квадратов. Возможно, вы видели подобный график в документации на некоторые ОУ.
Рис. 59. Шумовая характеристика операционных усилителей OPA209 и OPA140
При уменьшении сопротивления источника сигнала сопровождающий его шум Джонсона также уменьшается (обратно пропорционально корню сопротивления). В какой-то точке начинает преобладать шумовое напряжение усилителя, которое вносит основной вклад в общий шум усилителя. По мере увеличения сопротивления источника протекающий через него шумовой ток создает дополнительный линейно возрастающий шум, который увеличивается быстрее и в конечном итоге превышает тепловой шум исходного резистора. Таким образом, при высоком сопротивлении источника доминирует влияние шумового тока.
Наибольшие проблемы в схемах с малошумящими усилителями возникают при малом значении сопротивления источника сигнала от 2 кОм и меньше. При меньших сопротивлениях потребуется ОУ с очень маленьким шумовым напряжением. В общем случае результаты ОУ с биполярными входами в этом диапазоне оказываются лучше. Отметим также, что полный шум OPA209 на рисунке 59 приближается к сопротивлению источника в точке наилучших шумовых характеристик при RS = VN/IN.
При сопротивлениях источника выше 20 кОм операционные усилители с FET-входами вносят совсем небольшой дополнительный шум
Шумовой ток FET-усилителя, как правило, не играет важной роли, пока вы не достигнете мультигигаомного диапазона. Таким образом, можно дать следующие рекомендации: при сопротивлениях источника ниже 10 кОм малошумящие усилители с биполярными входами обычно обеспечивают более низкий уровень шума
При сопротивлениях выше 10 кОм КМОП- или JFE-усилители, скорее всего, будут иметь преимущество.
Цепь обратной связи R1 и R2 также вносит свой вклад в общий шум усилителя, но вы можете минимизировать его влияние. Если параллельное сопротивление R1 и R2 составляет одну десятую (или меньше) от величины сопротивления источника сигнала RS, то оно будет добавлять менее 10 процентов (<1 дБ) к суммарному шуму. Это справедливо для любого соотношения резисторов обратной связи, которые, как известно, определяют коэффициент усиления в замкнутом контуре. Стоит отметить, что на рисунке 59 шум компонентов обратной связи полагали равным нулю.
Конечно, это только малая часть полной картины шумов в схемах с ОУ, но это отличное начало для понимания всей темы. Хотите больше? Я рекомендую брошюру “Operational Amplifer Noise: Techniques and Tips for Analyzing and Reducing Noise”, написанную моим коллегой Артом Кеем.
Вопрос к размышлению: усилитель OPA140 демонстрирует отличные шумовые характеристики в широком диапазоне сопротивлений источника (от 10 кОм и выше). Есть ли способ перенести эти преимущества в диапазон меньших значений сопротивлений источника?
Общая универсальная таблица значений
Конечно, все обозначения и соотношения цветов держать в голове крайне сложно. Да и особой нужды в этом нет. Зато существует универсальная таблица цветовых значений, благодаря которой цветная маркировка резисторов расшифровывается без особого труда.
Подобные обозначения приняты большинством производителей в мире, что делает её универсальной для любой страны.
Для примера можно рассмотреть 6-полосный вариант с цветовыми кольцами: красный, оранжевый, жёлтый, зелёный, синий, коричневый.
- Красный — числовое значение «2».
- Оранжевый — числовое значение «3».
- Жёлтый — числовое значение «4».
- Зелёный — четвёртая полоска обозначает множитель, для зелёного (по данным таблицы) это значение 1*10⁵. Ориентируясь на таблицу, первые три цвета дают значение «234» Проведя расчёт 234*10⁵ получается 2,34 МОм.
- Синий — определяет точность, которая для этого цвета 0,25%, т. е. именно таково возможное отклонение от начального значения в любую из сторон при работе резистора.
- Коричневый — обозначает температурный коэффициент, в этом случае значение равно 100 ppm/°C.
Резистор ММТ-1
Справочник содержания драгоценных металлов в радиодеталях, создан на основе справочных данных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах, этикетках и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
Содержание драгоценных металлов в резисторе: ММТ-1
Золото: 0 Серебро: 0.0177 Платина: 0 МПГ: 0 По данным: Справочник по драгоценным металлам ПРИКАЗ №70
В постоянных резисторах содержится только серебро, которое нанесено на выводы. С переменными резисторами все лучше, в них может содержатся золото, серебро, платина и сплавы палладия. Особо богаты на драгметаллы претензионные переменные резисторы.
Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является ом (Ом). На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм). Драгоценные металлы в основном содержатся в переменных и построечных резисторах, в них часто используется палладий в виде бегунков или проволоки реохорды.
Типы резисторов
Существует три основных типа резисторов: Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом. Постоянные резисторы, сопротивление у данного резистора не изменить. Как правило имеют только два вывода. В данных резисторах может содержаться только серебро, в виде посеребренных выводов. Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.
Основные характеристики резисторов
Номинальное сопротивление (Ом, кОм, мОм). Максимальная рассеиваемая мощность (0,25 Вт, 0,5 Вт, 1 Вт, и т.д.) Допуск или класс точности (от этого значения зависит допустимый разброс параметров резистора).
Примеры буквенно-цифрового обозначения резистора
Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом: 47 Ом – 47 R; 47 кОм – 47 K; 47 МОм – 47 M. Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например: 0,47 Ом – R 47; 0,47 кОм – K 47; 0,47 МОм – M 47. Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например: 4,7 Ом – 4R7; 4,7 кОм – 4K7; 4,7 МОм – 4M7. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±7%, ±10%, ±40%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.
Онлайн калькулятор SMD резисторов
Этот калькулятор поможет вам определить сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.
Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).
Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.
Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.
Минусы классической схемы для звука
Не смотря на повсеместное применение этой схемы, есть у нее и некоторые недостатки
Быстродействие ОУ
При использовании такой схемы, даже с несамыми быстрыми ЦАП-ами следует использовать как можно более быстродействующие ОУ. Для музыкальных ЦАП-ов, с частотой дискретизации 44.1кГц лучше использовать ОУ, скорость нарастания сигнала которых более 10-20 В/мкс.
Скорость нарастания сигнала всегда приводится в даташитах на ОУ. Зачастую даже на первой странице документации.
Для примера вот кусок первой страницы документации на AD8066. Этот ОУ имеет скорость нарастания сигнала 180В/мкс. Он довольно часто упоминается на аудиофорумах и рекомендуется для выхлопа ЦАПа.
Прецизионность ОУ
Выходной ток ЦАП-ов обычно составляет единицы, реже — десятки миллиампер. По этой причине используемый ОУ должен быть еще и прецизионными.
Это означает, что он должен иметь минимальный входной сдвиг по току. Желательно велична сдвига был на уровне пикоампер. Для показанного выше AD8066 ток сдвига составляет 1пА.
При этом выбранный операционник должен еще и нормально «звучать»…
Типоразмеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.
Универсальная таблица цветов
Существует универсальная таблица цветов, которая позволяет проводить быстрый расчет номиналов каждого резистора при необходимости.
При создании подобной таблицы выделяют следующие поля:
- Цвет кольца или нанесенной точки. При этом, указывается как название, так и приводится пример.
- В зависимости от того, каким по счету стоит цвет, есть возможность перевести цветовую кодировку в числовое значение. Это необходимо при создании схемы для условного обозначения номиналов.
- Множитель позволяет провести математическое вычисление того, какое сопротивление имеет рассматриваемый вариант исполнения.
- Также, практически для каждого цвета имеется поле, которое обозначает максимально отклонение от номинала.
Стоит помнить, что каждый цвет может обозначать цифру в маркировке, значение множителя или максимальное отклонение.
Примеры
Пример 1:
Использование подобной таблицы рассмотрим на следующем примере: коричневый, черный, красный, серебристый. Чтение колец проводим слева на право, получаемое значение всегда кодируется в Омах.
Согласно данным из таблицы, проводим следующую расшифровку:
- Коричневый цвет в первом положении обозначает как цифру, так и множитель. В этом случае, цифра будет равна «1», а множитель «10». Стоит отметить, что в первой позиции не могут использоваться следующие цвета: черный, золотистый или белый.
- Второй цвет означает номер второй цифры. Черный означает «0» и он не используется при расчетах. Имея подобные данные, можно сделать вывод, что резистор имеет буквенно-числовую маркировку 1К0.
- Третий цвет определяет множитель. В нашем случае он красный, множитель у этого цвета «100».
- Последний цвет означает максимальный допуск по отклонению, и серебристый цвет соответствует 10%.
Используя таблицу, можно сказать, что рассматриваемый резистор имеет маркировку 1К0 и значение сопротивления 1000 Ом (10*100) или 1 кОм, а также допуск 10%.
Пример 2:
Еще одним более сложным примером назовем расчет номинальных значений следующего резистора: красный, синий, фиолетовый, зеленый, коричневый, коричневый. Данная маркировка состоит из 6 колец.
При расшифровке отмечаем следующее:
1 кольцо, красное – число «2».
2 кольцо, синее – число «6».
3 кольцо, фиолетовое – число «7».
Все числа выбираем из таблицы. При их сочетании получаем число «267».
4 кольцо имеет зеленый цвет
В данном случае обращаем внимание не на числовой значение, а множитель. Зеленый цвет соответствует множителю 105. Проводим расчет: 267*105=2,67 МОм.
5 кольцо имеет коричневый цвет и ему соответствует значение максимального отклонения в обе стороны 1%.
6 линия коричневая, что соответствует температурному коэффициенту в значении 100 ppm/°C.
Из вышеприведенного примера можно сказать, что провести расшифровку маркировки не сложно, и количество колец практически не оказывает влияние на то, насколько сложными будут расчеты. В рассматриваемом случае, резистор имеет сопротивление 2,67 МОм с отклонением в обе стороны 1% при температурном коэффициенте 100 ppm/°C.
Процедуру можно упростить, воспользовавшись специальными калькуляторами. Однако, не многие проводят вычисление 6 колец, что стоит учитывать.
Номинальные ряды резисторов можно назвать результатом проведения стандартизации номинальных значений. Постоянные резисторы имеют 6 подобных рядов. Также, введен один ряд для переменных номиналов и специальный ряд Е3.
На примере приведенного номинала проведем расшифровку:
- Буква «Е» обозначает то, что проводится маркировка по ряду номинала. Эта бука всегда идет в обозначении.
- Цифры после буквы означает число номинальных значений сопротивления в каждом десятичном интервале.
Существуют специальные таблицы с отображение номинальных рядов.
Для выявления стандартных рядов, был принят ГОСТ 2825-67. При этом, можно выделить несколько наиболее популярных стандартных рядов:
- Ряд Е6 имеет отклонение в обе стороны 20%.
- Ряд Е 12 имеет допустимое отклонение 10%.
- Ряд Е24 обладает показателем максимально допустимого отклонения в обе стороны 5%.
Последующие ряды Е48 и Е96, Е192 обладают показателем отклонения 2%, 1%, 0,5% соответственно.
Прецизионный резистор
Прецизионные резисторы применяют в наиболее ответственных цепях радиоэлектронной аппаратуры, где требуется высокая точность и стабильность параметров. Прецизионные резисторы УЛИ могут эксплуатироваться при значительных вибрациях и нагрузках.
Для прецизионных резисторов ( потенциометров), работающих в следящих системах-характерны низкие контактные давления и соответственно малые моменты трения. Их износоустойчивость достигает 106 – ГОТ циклов, но при этом вибрационная и ударная стойкость ниже, чек резисторов общего назначения. Под-строечнне резисторы обычно используются для разовых регулировок, поэтому их высокая износоустойчивость не требуется.
Погрешности прецизионных резисторов сведены до тысячных долей процента, а у резисторов общего назначения могут достигать нескольких процентов.
Uo прецизионных резисторов Ra , RK и коэффициента усиления Кс может быть почти полностью устранена в процессе калибровки прибора.
Так как прецизионные резисторы имеют обычно бифилярную обмотку, то значения остаточных индуктивностей в них невелики.
Кроме использования прецизионных резисторов , оптимальной схемы делителя и стабильного источника питания, – точность ПКН может быть повышена за счет структурного совершенствования схемы. Перед приемом преобразуемого кода сдвигающий регистр, выполненный по кольцевой схеме, разрывом цепи освобождается от кодовых сигналов. После приема кода цепь циркуляции замыкается, и зафиксированный в регистре код непрерывно перезаписывается в ячейках регистра. Соответственно каждая единица кода проходит последовательно все разряды делителя. За счет усреднения выходного напряжения для всех состояний времени на усредняющем устройстве – операционном усилителе удается исключить влияние погрешностей декодирующих сопротивлений на точность преобразования.
К группе прецизионных резисторов относятся резисторы повышенной точности ( 0 05 – 3 %) и стабильности ( ТКС 10 – 4 1 / град): с номинальными значениями величин сопротивления 1 Ом – f – 5 1 МОм, рабочими напряжениями не более сотен вольт, диапазоном номинальных мощностей рассеивания 0 05 – 2 Вт и частотным диапазоном до единиц мегагерц. Изменение величины сопротивления к концу срока службы, характеризующее старение резистора, составляет единицы процентов. Резисторы прецизионной группы применяют в точной измерительной аппаратуре и ответственных цепях аппаратуры специального назначения. Часто их используют как элементы магазинов сопротивлений, в цепях делителей и шунтов повышенной точности, а также в качестве различных нагрузок схем.
Какие типы прецизионных резисторов выпускает наша промышленность. Почему предпочтение отдается проволочным прецизионным резисторам.
На корпус пленочных прецизионных резисторов нанесен четырехзначный цифровой код в отличие от обычной цветовой разметки. Три первые цифры определяют величину сопротивления, а последняя – число нулей, то есть множитель. Например, код 1693 соответствует сопротивлению 169 кОм, а код 1000 – 100 Ом. Отметим, что Цветовые полоски играют такую же роль, но в цветовом коде участвуют только три ЦИфры. Для многих типов конденсаторов принята такая же цифровая маркировка.
В микросхеме имеются прецизионные резисторы с номинальным значением 5кОм ( Rocl и Roq2) – Эти резисторы предназначены для включения в цепь отрицательной обратной связи внешнего суммирующего усилителя токов. Предусмотрены три варианта включения этих резисторов: один резистор Лм1; два резистора последовательно; два резистора параллельно. При одном резисторе выходное напряжение ОУ изменяется до 10 В, при двух – до 20 В, а при параллельном соединении – до 5 В.
Маркировка советских резисторов
Первым делом давайте разберемся с советскими резисторами.
Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.
Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.
МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.
Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.
Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.
Давайте убедимся, так ли это на самом деле?
Ну да, все сходится с небольшой погрешностью.
Размеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры корпуса и мощность smd резисторов наиболее часто используемых на практике, а именно — smd резисторы 0201, 0420, 0603, 0805, 1206, 1210, 1218, 2010 и 2512:
Следовательно исходя из приведенной выше таблицы по размеру корпуса можно определить мощность smd резистора.
Маркировка низкоомных резисторов
Резисторы SMD исполнения сопротивлением менее одного ома маркируются с использованием символа R обозначающего децимальную точку. После символа R обозначается номинал сопротивления соответствующий фактическому значению.
Типоразмер | Тип подложки | Номинальная мощн. при 70°С | Рабочее напряжение | Максимально допустимое напряжение | Диапазон рабочих температур | Температурный коэффициент сопротивления |
---|---|---|---|---|---|---|
0402 | Керамика | 0,06 Вт | 50 В | 100 В | -55…+155°С | ±600 ppm/°С |
0603 | Керамика | 0,25 Вт | 500 В в течении 1 мин | -55…+125°С | ±250 ppm/°С и менее | |
0805 | Керамика | 0,125 Вт | 150 В | 300 В | -55…+125°С | ±600 ppm/°С |
2512 | Керамика | 1,0 Вт | 200В | 400 В | -55…+125°С | ±600 ppm/°С |
LR2512 | Металлический сплав | 2,0 Вт | 500 В в течении 1 мин | -55…+170°С | ±50 ppm/°С и менее | |
LR2725 | Металлический сплав | 4,0 Вт | 500 В в течении 1 мин | -55…+170°С | ±50 ppm/°С и менее | |
LR2728 | Металлический сплав | 4,0 Вт | 500 В в течении 1 мин | -55…+170°С | ±25 ppm/°С и менее |
Тип | Диапазон сопротивлений | Температурный коэффициент сопротивления | Номинальная мощность | Номинальный ток | Ток перегрузки | Диапазон рабочих температур |
---|---|---|---|---|---|---|
RTT02 | (60…200)x0,001 Ом | ±600 ppm/°С | 0,06 Вт | 1,58 А | 3,95 А | -55…+155°С |
RLP16 | 10×0,001 Ом | ±100 ppm/°С | 0,33 Вт | 5,74 А | -55…+155°С | |
RCC16 | (51…100)x0,001 Ом | ±250 ppm/°С | 0,25 Вт | 1,58…2,75 А | -55…+125°С | |
RLC20 | (51…3300)x0,001 Ом | ±250 ppm/°С | 0,25 Вт | 0,27…2,33 А | -55…+125°С | |
LR2512 | (0,5…3)x0,001 Ом | ±50 ppm/°С | 2 Вт | 63 А | 141 А | -55…+170°С |
(3,1…6,9)x0,001 Ом | ±25 ppm/°С | 2 Вт | 63 А | 141 А | -55…+170°С | |
(7,0…75)x0,001 Ом | ±15 ppm/°С | 2 Вт | 63 А | 141 А | -55…+170°С | |
LR2725 | (0,2….3)х0,001 Ом | ±50 ppm/°С | 4 Вт | 126 А | 252 А | -55…+170°С |
LR2728 | (4….50)х0,001 Ом | ±25 ppm/°С | 4 Вт | 31 А | 63 А | -55…+170°С |
Резисторы сопротивлением 1 ом и выше представлены в соответствующих разделах электронного каталога компонентов для поверхностного монтажа. Самые миниатюрные размеры имеют чип резисторы 0402 5%, 0402 1% и 0603 5%, 0603 1%. SMD резисторы 0805 5%, 0805 1%; 1206 5%, 1206 1% имеют большие размеры однако позволяют рассеять большую мощность, наибольшую мощность рассеивают чип резисторы 2512 5% и 2512 1%. Для высоковольтных применений изготавливаются высокоомные чип резисторы 0805.
Технические характеристики и маркировка низкоомных чип резисторов серии RL и LR производителя Yageo
Технические характеристики и маркировка низкоомных чип резисторов на металлизированной подложке серии RLP производителя KAMAYA
Технические характеристики и маркировка низкоомных чип резисторов серии RLC производителя KAMAYA
Технические характеристики и маркировка низкоомных чип резисторов серии RCC производителя KAMAYA
Технические характеристики и маркировка низкоомных чип резисторов серии RTT производителя RALEC
Технические характеристики и маркировка низкоомных чип резисторов на подложке из металлического сплава
Технические характеристики и маркировка низкоомных чип резисторов 2725 4Вт 0,01Ома 0,001Ома
Производитель — ,
Больше конкретики
На практике величина резистора выбирается достаточно маленькой, обычно в пределах 50-100 ом. В таком случае при максимальном выходном токе в 1 мА (для TDA1387) на выходе резистора будет получено напряжение полезного сигнала порядка 50-100 мВ.
В сети встречаются схемы в которых используются резисторы номиналом до 1кОма. При этом часто прибегают к параллельному (каскадному) включению ЦАПов.
Автор считает применение резистора столь большого номинала просто неприемлемым. Выше уже говорилось об возможных ошибках преобразования. Напряжение в 1 вольт может вызывать ошибки преобразования ЦАП не только в младших, но уже и в старших разрядах.
Для чего нужна?
Прочитать параметры, которые часто имеют несколько цифр, достаточно сложно, как и нанести их. При указании номинала, если размеры позволяют, часто используют букву для того, чтобы определить дробную величину значения.
Примером можно назвать 4К7, что означает 4,7 кОм. Однако, также подобный метод в некоторых случаях не применим.
Цветовая схема маркировки имеет следующие особенности:
- Легко читаемая.
- Проще наносится.
- Может передать всю необходимую информацию о номиналах.
- Со временем информация не стирается.
При этом, можно отметить основное различие в данной маркировке:
- При точности 20% используется маркировка, содержащая 3 полоски.
- Если точность составляет 10% или 5%, то наносится 4 полоски.
- Более точные варианты исполнения имеют 5 или 6 полосок.
Подведя итоги, можно сказать, что нанесение цветов позволяет узнать точность и номинальные значения резистора, для чего нужно использовать специальные таблицы или онлайн-сервисы.
Маркировка SMD резисторов по EIA-96
Четырехзначное обозначение параметров резисторов не является оптимальным методом. Все же для четырех символов места на малогабаритных корпусах недостаточно. Поэтому приборов с точностью 1% для форм-факторов ниже 0805 применяется другая система маркировки, состоящая из двух цифр и буквенного символа. Такое обозначение вводится стандартом EIA-96, согласно которому две цифры означают номинал в омах, а буква – множитель.
Таблица кодов и значений маркировки резисторов
В стандарте EIA-96 нет прямого соответствия между цифрами маркировки и номиналом. Фактическому значению сопротивления сопоставлен код. Чтобы определить значение сопротивления, надо обратиться к таблице:
Таблица 1. Таблица кодов и значений маркировки резисторов по EIA-96.
Так, коду 20 соответствует значение 158 Ом, а коду 69 – 511. Очевидно, что запомнить соответствие кода и номинала очень сложно. Поэтому рекомендуется пользоваться таблицей или онлайн-калькулятором.
Таблица множителей
Таблица множителей меньше, но также неочевидна и сложна для запоминания:
Таблица 2. Таблица значений буквенных множителей в маркировке резисторов по EIA-96.
Это означает, что полный номинал резистора, имеющего маркировку 22А, равен 165×1=165 Ом, а 44B – 280×10=2800 Ом = 2,8 кОм.