Тиристор ку208г характеристики, схемы включения, цоколевка, аналоги

Конструкция и детали.

Регулятор собран в корпусе блока питания известного компьютера «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке из стали толщиной 0,5 мм. Уголок прикручивается к корпусу двумя винтами М2,5 с использованием изоляционных шайб.

Резисторы R2, R3 и неоновая лампа HL1 обшиты изоляционной трубкой (батистом) и закреплены шарнирным способом крепления к другим электрическим элементам конструкции.

Для повышения надежности крепления штырей вилки пришлось припаять к ним несколько витков толстой медной проволоки.

Это аспект регуляторов мощности, которые я использую много лет.

И это 4-секундное видео, которое позволяет убедиться, что все работает. Нагрузка — лампа накаливания мощностью 100 ватт.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.


Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Технические характеристики

Имея свойство пропускать переменный ток в обоих направлениях, КУ208Г может работать в сетях со стандартными 220В для включения/выключения мощной нагрузки. При этом, он рассчитан на значительно большее напряжение (до 400В), даже если будет закрыт. Рассмотрим его максимально допустимые значения этого популярного симметричного тиристора, впервые изготовленного ещё во времена советской промышленности.

Предельные эксплуатационные параметры

Основными максимальными эксплуатационными параметрами для тиристора КУ208Г (при Т окр.= -60 оС … +70оС, если не указано другого) являются:

  • напряжение на силовых электродах: в закрытом состоянии (UЗСмакс.) до 400В; в открытом (UОСмакс.) до 2В;
  • ток в открытом состоянии (IОС): постоянный до 5А; переменный до 10А; перегрузочный до 30А (при f=50Гц);
  • прямой импульсный ток управления(IУ) от 500мА до 1А (при tИ<50мкс);
  • мощность рассеивания (PУ) до 10 Вт;
  • рабочая температура (Токр.) от -60 оС до + 85оС;
  • частота (f) до 400 Гц;
  • статический потенциал до 2000 В.

Полярность подключения

Серия КУ208 при подключении в прямом направлении, т.е. при положительном напряжении на аноде «А2» относительно катода «А1», открывается импульсами подаваемыми на управляющий электрод (УЭ) с любой полярностью. Если вывод «А2» подключен к минусу, то управление возможно только отрицательным потенциалом на УЭ.

Приступаем к сборке регулятора

Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.

Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.

Будьте очень внимательны при испытании. Все детали схемы находятся под прямым напряжением сети 220 вольт и прикосновение к ним, является очень опасным. Если сборка вами проведена правильно, то всё должно заработать сразу. Устройство в регулировке и наладке не нуждается.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Регулятор мощности на симисторе: схема, изготовление своими руками В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Спрашивайте, я на связи!

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Как работает симистор? Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе. Спрашивайте, я на связи!

Симисторный регулятор мощности: описание принципа работы и сборки устройства

Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа

Провода, которыми соединяются все элементы, должны быть как можно короче.
Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
Проверьте схему, используя мультиметр в режиме измерения сопротивления.
Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
Всю схему можно установить в пластиковом корпусе.
Установите в крайнее левое положение ручку переменного резистора и включите прибор.
Измерьте значение напряжения на выходе устройства

Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.


Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.


Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.

Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.

При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.

Так выглядят регуляторы мощности, которые я использую много лет.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Советский симметричный тиристор КУ208Г

Технические характеристики КУ208Г указывают, что это симметричный тиристор (т.е. симистор) средней мощности. Он разработан специально для работы в качестве бесконтактного электронного ключа большого переменного тока (до 10А) и напряжения (до 400В) в коммутационных схемах силовой автоматики. Представляет собой кремниевый полупроводниковый прибор состоящий из нескольких слоев p-n-переходов.

  1. Распиновка
  2. Технические характеристики
  3. Предельные эксплуатационные параметры
  4. Полярность подключения
  5. Простые схемы включения
  6. Схема регулировки мощности
  7. Аналоги
  8. Производители

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Популярное: Как проверить конденсатор мультиметром: два способа

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.

Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Рекомендации по применению

Тиристоры КУ201 (2У201) и КУ202 (2У202) применяются в качестве ключей. КУ201 (2У201) рассчитаны на меньший рабочий ток, чем КУ202 (2У202).

Подробнее о тиристорных схемах и применении тиристоров.

При отрицательном напряжении на аноде на управляющий электрод нельзя подавать положительное напряжение, но можно подавать отрицательное напряжение, что позволяет использовать эти тиристоры (те, для которых нормировано обратное напряжение) включенными встречно-параллельно для имитации симистора.

Производитель рекомендует включать между катодом и управляющим электродом резистор 51 Ом. Мы на своем опыте убедились, что при подвешенном управляющем электроде (отключенном от каких-либо цепей) эти тиристоры работают нестабильно. Происходят самопроизвольные открывания. В типичных схемах управления, когда нужно, чтобы тиристор был закрыт, на его управляющий электрод просто не подают отпирающее напряжение, но не обеспечивают замыкание между управляющим электродом и катодом. В таких схемах шунтирующий резистор необходим. Производители распространенных оптопар, предназначенных для управления тиристорами (например, MOC3061, MOC3062, MOC3063), рекомендуют применять свои оптроны с большими номиналами шунтирующего резистора. Однако, наши эксперименты показали, что эти оптопары прекрасно работают с шунтирующими резисторами от 150 Ом, а рассматриваемые тринисторы устойчиво запираются при сопротивлении резистора между катодом и управляющим электродом вплоть до 500 Ом при условии, что температура корпуса тиристора не превышает 50 градусов Цельсия. Получается интервал значений, допустимых и для оптрона, и для тиристора, от 150 Ом до 500 Ом. Так что можно подобрать нужные номиналы, при которых будет нормально работать и оптрон и тиристор. Исходить нужно их температуры, при которой будет работать тиристор. Если он будет сильно нагружен или плохо охлаждаться, то лучше выбрать резистор поменьше (150 — 250 Ом). При этом оптрон будет повышенная, но вполне допустимая, нагрузка на оптрон. Если нагрузка небольшая, то лучше использовать резистор 400 — 500 Ом.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Схемотехника — тиристорные, динисторные, симисторные, тринисторные схе…
Схемотехника тиристорных устройств. Практические примеры. …

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Светомузыка, светомузыкальная приставка своими руками. Схема, конструк…
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист…

Транзисторный силовой ключ. Биполярный транзистор. Ключевой режим. Рас…
Биполярный транзистор в ключевом режиме. Схема. Расчет….

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле…
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома…

Диодные схемы. Схемные решения. Схемотехника. Частота, мощность, шумы….
Классификация, типы полупроводниковых диодов. Схемы, схемные решения на диодах. …

Проверка электронных элементов, радиодеталей. Проверить исправность, р…
Как проверить исправность детали. Методика испытаний. Какие детали можно использ…

Цветомузыка, цветомузыкальное оборудование своими руками. Схема ЦМУ, к…
Как самому сделать цвето-музыку. Оригинальная конструкция цвето-музыкальной сист…

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Устройство и схемы простых регуляторов

Простейшая схема, которая может работать под любой нагрузкой. Комплектующие простейшие электронные компоненты, а управление осуществляется по фазово-импульсному принципу.

По R2 и R3 протекает ток, который накапливает заряд на конденсаторе С1. После того, как на заряд достигнет значения 32 В, откроется динистор VD3 и конденсатор С1 начнет разряжаться через R4 и VD3. Энергия пойдет на симистор VD4, он откроется и даст току протекать через нагрузку.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

Элементы VD1, VD2, R1 являются не обязательными в данной схеме, но они позволяют обеспечивать плавность и точность изменения выходной мощности.

Для того, чтобы правильно рассчитать симисторный регулятор мощности нужно отталкиваться от используемой нагрузки, симистор подбирается по соотношению 1А=200 Вт.

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Советуем Вам также ознакомиться с параметрами стабилитрона д814а.

Cхемы включения

Разберём схему регулятора мощности на тиристоре КУ208Г, являющуюся типичной. На ее примере можно понять принцип работы симистора. Рассматриваемое устройство можно использовать для подключения паяльника, электрической лампочки и других устройств.

Здесь на электрод тиристора, от электрической сети 200В, подаётся переменное напряжение. Кроме этого на управляющий электрод, через диодный мост VDS1, сопротивление R1 и R2, поступает постоянное отрицательное напряжение. Когда порог открытия будет превышен, симистор откроется, а при смене сетевого напряжения закроется. На следующей синусоидальной волне весь процесс повторится.

Резистором R2 регулируется напряжение на управляющем электроде. При его увеличении этом симистор будет быстрее включаться и длительность напряжения на нагрузке будет больше. Если уменьшить напряжение, подаваемое на управляющий электрод, продолжительность импульса и напряжение на нагрузке сократится.

Для схемы «Симисторный регулятор мощности»

Предлагаемый регулятор мощности (рис.1) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются товарищ от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль

Кт838а схемы Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы

В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симис… Смотреть описание схемы …

Виды современных устройств

Развитие полупроводниковой техники сделало возможным управление мощностью с помощью радиоэлементов с эффективностью 80% и более. Это дало возможность удобно использовать их в сети с напряжением 220 вольт, не требуя больших систем охлаждения. А появление интегральных микросхем позволило получить миниатюрные размеры всего регулятора в целом.

На данный момент производство выпускает следующие виды устройств:

  1. Фаза. Используется для управления яркостью ламп накаливания или галогенных ламп. Другое их название — тусклее.
  2. Тиристор. Работа основана на использовании задержки включения тиристорного переключателя в полупериоде переменного тока.

  3. Симистор. Мощность регулируется за счет изменения количества полупериодов напряжения, действующего на нагрузку.
  4. Регулятор хода. Он позволяет легко изменять электрическую мощность, подаваемую на электродвигатель.

В этом случае настройка происходит независимо от формы входного сигнала. По типу размещения устройства управления делятся на переносные и стационарные. Они могут быть выполнены как в самостоятельном корпусе, так и интегрированы в оборудование. К основным параметрам, характеризующим регуляторы электроэнергии, относятся:

  • плавность регулирования;
  • рабочая и пиковая потребляемая мощность;
  • диапазон входного рабочего сигнала;
  • Эффективность.

Тиристорный прибор управления


Принцип работы такого устройства не особо сложен. В основном тиристорный преобразователь используется для управления маломощными устройствами. Типичная схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, транзисторов и биполярных резисторов, которые задают его рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, генерируют импульсный сигнал. Как только напряжение на конденсаторе сравнивается с рабочим напряжением, транзисторы включаются. Сигнал поступает на управляющий выход тиристора, тоже открывая его. Конденсатор разряжен, а ключ застрял. Это повторяется в цикле. Чем больше задержка, тем меньше мощности подается на нагрузку.

Достоинства регулятора этого типа в том, что он не требует регулирования, а недостатком является чрезмерный нагрев. Для борьбы с перегревом тиристора применяется активная или пассивная система охлаждения.

Этот тип регулятора используется для преобразования мощности, подаваемой как в бытовые приборы (паяльник, электронагреватель, спиральная лампа), так и в промышленные (постепенный запуск мощных электростанций). Схемы подключения могут быть однофазными и трехфазными. Наиболее используемые: ку202н, ВТ151, 10РИА40М.

Симисторный преобразователь мощности

Симистор — это полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной особенностью устройства является то, что его выводы не разделены на анодные и катодные. В отличие от тиристора, который проводит ток только в одном направлении, симистор проводит ток в обоих направлениях. Поэтому его используют в сетях переменного тока.

Важное различие между симисторными и тиристорными схемами заключается в том, что выпрямитель не требуется. Принцип работы основан на фазовом управлении, то есть на изменении момента открытия симистора по отношению к переходу переменного напряжения через ноль

Это устройство позволяет управлять нагревателями, лампами накаливания и скоростью электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с регулируемой шириной импульса.

Фазовый способ трансформации


Сам диммер имеет широкий спектр применения. Один из вариантов его использования — регулировка интенсивности света. Электрическая схема устройства часто реализуется на специализированных микроконтроллерах, которые используют встроенную в свою работу электронную схему понижения напряжения. Из-за этого диммеры могут легко изменять мощность, но подвержены помехам.

Стабилизаторы фазной мощности с помощью стабилитронов не стабилизируются, а в качестве стабилизаторов используются согласованные тиристоры. В основе их работы лежит изменение угла открытия ключевого тиристора, в результате чего на нагрузку подаются сигналы с отсечкой начальной части полупериода, снижающие действующее значение напряжения. К недостаткам диммеров можно отнести высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Когда диммеры работают в широком диапазоне частот, возникают электромагнитные помехи. Такие выбросы приводят к снижению КПД из-за появления в проводниках вихревого тока. Для борьбы с такими токами в конструкцию добавлены индуктивно-емкостные фильтры.

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Тиристоры КУ202 кремниевые, планарно-диффузионные, структуры p-n-p-n, триодные, незапираемые. Предназначены для применения в качестве коммутаторов напряжения управляемых малыми управляющими сигналами. КУ202 выпускаются в металлостеклянном корпусе с жесткими выводами. Масса КУ202 (не более) – 14 г, с комплектующими деталями (не более) – 18 г.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: