Двойной триод 6н9с

История

Изобретён и запатентован в 1906 году американцем Ли де Форестом. Обычно используется для усиления, генерации и преобразования электрических сигналов.

Наименование триод

в 1950—1970 годах, во времена становления полупроводниковой электроники, также употреблялось и для транзисторов — по числу выводов, часто с уточнением:полупроводниковый триод, или с указанием материала: (германиевый триод,кремниевый триод).

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века.

Нелинейность вольт-амперной характеристики триода пропорциональна квадратному корню из третьей степени величины тока анода, то есть она имеет более высокую линейность, чем полупроводниковые транзисторы XX века. Благодаря этому вакуумные триоды вносят минимальные нелинейные искажения в усиливаемый сигнал.

В ходе дальнейшего совершенствования триода были разработаны многосеточные лампы: тетрод, лучевой тетрод, пентод и другие.

Двойные триоды

Двойной триод с объединённым катодом. Условное графическое обозначение. а1 — анод первого триода, а2 — анод второго триода, с1 — сетка первого триода, с2 — сетка второго триода, к — катод, п — подогреватель катода. Российский двойной триод 6Н2П Комбинированные лампы, конструктивно представляющие сборки двух и более индивидуальных триодов, заключенных в общую вакууммированную колбу, называют двойными триодами

. Обычно оба триода имеют раздельные и изолированные друг от друга системы электродов — анодов, сеток и катодов. Существуют типы сдвоенных триодов с общим катодом. Практически всегда цепи накала обоих катодов электрически соединены внутри баллона и из баллона выведено только два вывода накала.

В основном, двойные триоды — приборы, предназначенные для работы в усилителях звуковых частот (УНЧ), схемах промышленной автоматики, переключательных схемах. Но существуют и высокочастотные сдвоенные триоды, например, 6Н3П.

На закате ламповой эры, с целью повысить интеграцию ламповых схем, выпускались строенные триоды (конструктив «компактрон» (англ. compactron), где в одном баллоне совмещались три триода, однако эти лампы, в отличие от двойных триодов, не получили массовое распространение. В то время в промышленности наиболее широко применялись маломощные двойные триоды 6Н2П, 6Н1П, 12AX7, 6SN7, 6SL7, другие.

Применение сдвоенных триодов улучшало массогабаритные характеристики электронной аппаратуры.

Отечественные двойные триоды

Основная статья: Двойные электровакуумные триоды производства СССР

  • 1Н3С — двойной триод, малой мощности, с общим катодом прямого накала. Предназначен для использования в выходных каскадах УНЧ (до 1,5 Вт), работающих в классе В, что позволяет работать с батарейным питанием.
  • 6Н5С ,6Н13С — двойной низкочастотный мощный триод, с октальным цоколем, аналог 6AS7. Предназначен для работы в стабилизаторах напряжения. Может эффективно использоваться в высококачественных УНЧ; на базе современных 6Н13С российского производства строится большинство современных бестрансформаторных ламповых усилителей.
  • 6Н7С — двойной низкочастотный триод с общим катодом, с октальным цоколем, аналог 6N7. Предназначался для дифференциальных каскадов усилителей НЧ, а также для оконечных каскадов УНЧ, работающих в классе В.
  • 6Н8С — низкочастотный двойной триод, c октальным цоколем, аналог 6SN7 — наиболее распространённой лампой в современной аппаратуре. Предназначен для усиления сигналов низкой частоты.
  • 6Н9С — низкочастотный двойной триод c высоким коэффициентом усиления, с октальным цоколем, аналог 6SL7. После снятия с производства выпускался аналог в «пальчиковом» корпусе 6Н2П. Предназначен для усиления сигналов высокой[уточнить ] частоты. Применяется в телевизионной и приёмно-передающей аппаратуре.
  • 6Н1П — двойной миниатюрный низкочастотный триод, функциональный аналог 6Н8С и 6DJ8. Отличается более высоким током накала. Производились импульсные версии 6Н1П-И с повышенной предельной эмиссией электронов на катоде.
  • 6Н2П — двойной миниатюрный низкочастотный триод с высоким коэффициентом усиления, функциональный аналог 6Н9С. Электрический аналог широко распространенной лампы 12AX7, но несовместим с ней по разводу электрических выводов.
  • 6Н3П — двойной миниатюрный высокочастотный триод. Широко применялся в отечественных гражданских радиоприёмниках — на 6Н3П строились блоки преобразования частоты УКВ диапазона.
  • 6Н23П — двойной миниатюрный триод, функциональный аналог ECC88. Предназначен для широкополосного усиления напряжения высокой частоты, схем промышленной автоматики.
  • 6Н6П ,6Н30П — двойные миниатюрные триоды средней мощности. Предназначены для усиления низкой частоты и работы в импульсных схемах, а также в двухтактных выходных каскадах УНЧ малой мощности. 6Н30П — вероятно, единственная из советских ламп, не имеющих зарубежных аналогов, которая используется в современных зарубежных промышленных изделиях.
  • 6Н17Б — двойной малогабаритный триод малой мощности.

Схема применения лампы 6Н8С в качестве усилителя напряжения низкой частоты на сопротивлениях

Конденсатор, шунтирующий катодное сопротивление, должен быть электролитическим емкостью не менее 10 мкФ. Данные каскада при разных источниках анодного питания и разных анодных нагрузках приведены в таблице 1, а емкости переходного конденсатора для разных значений низшей частоты полосы пропускания даны в таблице 2.

Таблица 1. Данные деталей каскада усилителя низкой частоты на лампе 6Н9С

________________________________________________________ | Сопротивление в цепи | | | |___________________________________| Выходное |Коэффи- | | анода |сетки последующего| катода |напряжение,| циент | |Rа, МОм| каскада Rс, МОм |Rк, кОм| В |усиления| |_______|__________________|________|___________|________| | Напряжение источника питания 180 В | |________________________________________________________| | 0.1 | 0.1 | 1.9 | 24 | 25 | | 0.1 | 0.25 | 2.1 | 34 | 29 | | 0.1 | 0.5 | 2.4 | 38 | 33 | | 0.25 | 0.25 | 3.7 | 29 | 35 | | 0.25 | 0.5 | 4.3 | 39 | 39 | | 0.25 | 1.0 | 4.8 | 45 | 41 | | 0.5 | 0.5 | 6.1 | 34 | 40 | | 0.5 | 1.0 | 6.8 | 45 | 43 | | 0.5 | 2.0 | 7.8 | 51 | 45 | |_______|__________________|________|___________|________| | Напряжение источника питания 300 В | |________________________________________________________| | 0.1 | 0.1 | 1.5 | 49 | 29 | | 0.1 | 0.25 | 1.9 | 70 | 34 | | 0.1 | 0.5 | 2.1 | 76 | 36 | | 0.25 | 0.25 | 2.8 | 63 | 39 | | 0.25 | 0.5 | 3.4 | 78 | 42 | | 0.25 | 1.0 | 3.7 | 90 | 45 | | 0.5 | 0.5 | 4.7 | 70 | 45 | | 0.5 | 1.0 | 6.0 | 87 | 48 | | 0.5 | 2.0 | 6.6 | 100 | 49 | |_______|__________________|________|___________|________|

История

Изобретён и запатентован в 1906 году американцем Ли де Форестом. Обычно используется для усиления, генерации и преобразования электрических сигналов.

Наименование триод

в 1950—1970 годах, во времена становления полупроводниковой электроники, также употреблялось и для транзисторов — по числу выводов, часто с уточнением:полупроводниковый триод, или с указанием материала: (германиевый триод,кремниевый триод).

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века.

Нелинейность вольт-амперной характеристики триода пропорциональна квадратному корню из третьей степени величины тока анода, то есть она имеет более высокую линейность, чем полупроводниковые транзисторы XX века. Благодаря этому вакуумные триоды вносят минимальные нелинейные искажения в усиливаемый сигнал.

В ходе дальнейшего совершенствования триода были разработаны многосеточные лампы: тетрод, лучевой тетрод, пентод и другие.

Современное состояние

В настоящее время вакуумные триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен М — ГГц большой мощности при небольшом числе активных компонентов, а габариты и масса не столь критичны, — например, в выходных каскадах радиопередатчиков. Мощные радиолампы имеют сравнимый с мощными транзисторами КПД; надёжность их также сравнима, но срок службы значительно меньше. Маломощные триоды имеют невысокий КПД, так как на накал тратится значительная часть потребляемой каскадом мощности, порой более половины от общего потребления лампы.

Также на базе ламп всё ещё делается некоторая часть высококачественной акустической усилительной аппаратуры классов Hi-Fi и Hi-End, несмотря на то, что фиксируемый приборами коэффициент нелинейных искажений у почти любых современных транзисторных приборов во много раз меньше, чем у ламповых.[источник не указан 2799 дней

] Несмотря на высокую стоимость, такая аппаратура весьма популярна у музыкантов и аудиофилов благодаря её так называемому более «тёплому», «ламповому» звучанию, которое якобы воспринимается человеком как более естественное и близкое к тому, что было при записи исходного звука. Триод — простая по конструкции лампа, имеющая при этом высокий коэффициент усиления, поэтому она хорошо вписывается в один из принципов построения альтернативной звукотехники — принцип минимализма, то есть предельной простоты аппаратуры.

Двойные триоды

Двойной триод с объединённым катодом. Условное графическое обозначение. а1 — анод первого триода, а2 — анод второго триода, с1 — сетка первого триода, с2 — сетка второго триода, к — катод, п — подогреватель катода. Российский двойной триод 6Н2П Комбинированные лампы, конструктивно представляющие сборки двух и более индивидуальных триодов, заключенных в общую вакууммированную колбу, называют двойными триодами

. Обычно оба триода имеют раздельные и изолированные друг от друга системы электродов — анодов, сеток и катодов. Существуют типы сдвоенных триодов с общим катодом. Практически всегда цепи накала обоих катодов электрически соединены внутри баллона и из баллона выведено только два вывода накала.

В основном, двойные триоды — приборы, предназначенные для работы в усилителях звуковых частот (УНЧ), схемах промышленной автоматики, переключательных схемах. Но существуют и высокочастотные сдвоенные триоды, например, 6Н3П.

На закате ламповой эры, с целью повысить интеграцию ламповых схем, выпускались строенные триоды (конструктив «компактрон» (англ. compactron), где в одном баллоне совмещались три триода, однако эти лампы, в отличие от двойных триодов, не получили массовое распространение. В то время в промышленности наиболее широко применялись маломощные двойные триоды 6Н2П, 6Н1П, 12AX7, 6SN7, 6SL7, другие.

Применение сдвоенных триодов улучшало массогабаритные характеристики электронной аппаратуры.

Отечественные двойные триоды

Основная статья: Двойные электровакуумные триоды производства СССР

  • 1Н3С — двойной триод, малой мощности, с общим катодом прямого накала. Предназначен для использования в выходных каскадах УНЧ (до 1,5 Вт), работающих в классе В, что позволяет работать с батарейным питанием.
  • 6Н5С ,6Н13С — двойной низкочастотный мощный триод, с октальным цоколем, аналог 6AS7. Предназначен для работы в стабилизаторах напряжения. Может эффективно использоваться в высококачественных УНЧ; на базе современных 6Н13С российского производства строится большинство современных бестрансформаторных ламповых усилителей.
  • 6Н7С — двойной низкочастотный триод с общим катодом, с октальным цоколем, аналог 6N7. Предназначался для дифференциальных каскадов усилителей НЧ, а также для оконечных каскадов УНЧ, работающих в классе В.
  • 6Н8С — низкочастотный двойной триод, c октальным цоколем, аналог 6SN7 — наиболее распространённой лампой в современной аппаратуре. Предназначен для усиления сигналов низкой частоты.
  • 6Н9С — низкочастотный двойной триод c высоким коэффициентом усиления, с октальным цоколем, аналог 6SL7. После снятия с производства выпускался аналог в «пальчиковом» корпусе 6Н2П. Предназначен для усиления сигналов высокой[уточнить ] частоты. Применяется в телевизионной и приёмно-передающей аппаратуре.
  • 6Н1П — двойной миниатюрный низкочастотный триод, функциональный аналог 6Н8С и 6DJ8. Отличается более высоким током накала. Производились импульсные версии 6Н1П-И с повышенной предельной эмиссией электронов на катоде.
  • 6Н2П — двойной миниатюрный низкочастотный триод с высоким коэффициентом усиления, функциональный аналог 6Н9С. Электрический аналог широко распространенной лампы 12AX7, но несовместим с ней по разводу электрических выводов.
  • 6Н3П — двойной миниатюрный высокочастотный триод. Широко применялся в отечественных гражданских радиоприёмниках — на 6Н3П строились блоки преобразования частоты УКВ диапазона.
  • 6Н23П — двойной миниатюрный триод, функциональный аналог ECC88. Предназначен для широкополосного усиления напряжения высокой частоты, схем промышленной автоматики.
  • 6Н6П ,6Н30П — двойные миниатюрные триоды средней мощности. Предназначены для усиления низкой частоты и работы в импульсных схемах, а также в двухтактных выходных каскадах УНЧ малой мощности. 6Н30П — вероятно, единственная из советских ламп, не имеющих зарубежных аналогов, которая используется в современных зарубежных промышленных изделиях.
  • 6Н17Б — двойной малогабаритный триод малой мощности.

↑ Блок питания

Для анодного питания фонокорректора использован трансформатор со средней точкой на вторичной обмотке, что позволяет получить два напряжения — 175V и 350 V.

Рис. 45.

Схема включения силового трансформатора

В качестве стабилизаторов напряжения использован стабилизатор, описанный в статье Е. Карпова «Высоковольтный стабилизатор с малым уровнем пульсаций».

Рис. 46.

Схема стабилизатора 150V

Рис. 47. Схема стабилизатора 300V

Рис. 48.

Внешний вид модуля стабилизатора 150V

В теме Простой высоковольтный стабилизатор автор приводит ссылку на электронную модель этого стабилизатора для симулятора MicroCap. В статье «Высоковольтный стабилизатор с малым уровнем пульсаций» даны рекомендации по изменениям номиналов схемы для требуемого выходного напряжения. Накальный стабилизатор выполнен по схеме автора US5MSQ.

В моём случае напряжение трансформатора 2×8 V. Использован стабилитрон 5v1, переменный резистор на 100 kOm позволяет изменять выходное напряжение в пределах нескольких десятых вольта, диапазон регулировки зависит от входного напряжения.

Если будет использован транзистор, отличный от IRF510, то может потребоваться изменение номинала резистора R2 или использование стабилитрона на другое напряжение. Источник питания накала ламп не имеет гальванической связи с общей землёй.

Рис. 49.

Схема стабилизатора накала

Рис. 50. Внешний вид модуля стабилизатора накала

Сглаживание пульсаций тока накала оказалось не достаточным для данной схемы. Чтобы не переделывать трансформатор и стабилизатор накала, применена простейшая компенсационная схема борьбы с фоном. На выходе стабилизатора создана искусственная средняя точка с помощью двух резисторов по 30 Om. Эта средняя точка соединена с общей землёй плёночным конденсатором на 2×2,2 uF.

Подробнее о ламповых усилителях и их практические примеры

Здесь будет статья с картинками. Можно показать упрощенный вариант схемотехники усилителя на лампах 6Р3С. Эта лампочка нигде в оглавлении сайта не отмечена, а усилитель на ней сделан. В качестве донора для построения лампового усилителя на 6Р3С можно использовать трансляционный услитель 100У-101. Оттуда берут только выходной трансформатор. Можно попытаться применить силовик. Однако здесь нужно быть внимательным. Вначале следует тщательно оценить рассеяние, измерив ток холостого хода. Если ток не более 50 мА, то смело применяйте. Если ток конский, то просто продайте это железо новичку. Ему пока не важен уровень фона в усилителестроении.

Панельки для 6Р3С лучше использовать керамические (подходят от ГУ-50), поскольку нагревается лампа сильно. Карболит может подгорать и противно вонять. Остатки трансляционного усилителя 100У можно спокойно отнести на помойку. Лампа 6Р3С ничего выдающегося собой не представляет. Более того, баллон маловат для заявленной мощности рассеяния по аноду. Анодные выводы расположеня сверху баллона, это не очень удобно. Зато в каждом баллоне по два лучевых тетрода, схожих по характеристикам с 6П3С. Симметрией половинки лампы не отличаются, поэтому лучше тетроды одного баллона запараллелить, поставивив со всех сторон выравнивающие резисторы. Выходной трансформатор будет работать в облегченном режиме поскольку он рассчитан на параллельную работу трёх половинок в оригинальной схеме 100У. Если обеспечить принудительное воздушное охлаждение, то подгрузить лампочки можно побольше. Пример раскроя железного листа для изготовления корпуса показан ниже.

Пример схемы усилителя показан ниже. В отличие от усилителя 100У обе половинки лампы использованы в параллельном включении.

Схема типовая, раскачки вполне достаточно. А вот картинку схемы выходного трансформатора показать стоит. Это типовой трансформатор от лампового усилителя 100У. Выглядит этот усь как квадратный яшик, нередко голбоватого цвета, с одним индикатором на лицевйо панели. Смысл этого усилителя в его размерах. Назначение — трансляционный. Следовательно выходной трансформатор у него специфический, для работы на длинную линию. И нужно трансформатор переделывать, простым путём, обыкновенной перепайкой.

Перед применением его нужно внимательно осмотреть, убрать лишние соединиения, и провести ревизию. Усилители 100У-101 старые, часто ржавые. Обязательно выполняют проверку обмоток мегометром. Если откровенного брака нету, то дальше трансформатор пропитывают в парафине. Основательно нужно пропитывать. Полчаса в парафиновой ванне при 80-90- градусах. На печке можно греть, на даче, чтобы вонь парафиновую не нюхать. У меня есть более продвинутые чертежи для схемы выходного трансформатора, но показывать их пока не буду. Достаточно для понимания и этих стандартных картинок.

Евгений Бортник, Красноярск, Россия, март 2013

Двухтактный ламповый усилитель на 6П3С и 6Н9С

Собственно вирус лампового звука внедрился в меня посредством небольшой статьи, размещённой на этом ресурсе. Вот она, тут находится. Спасибо автору Началось изучение теории по данному вопросу, причём не эзотерическая ересь из интернетов, а книги Цыкина, Гершунского, Войшвилло и тому подобное. Радиолюбительские журналы 60-х годов тоже интересные, многие современные ноу-хау встречаю именно в них.

Сделать усилитель своими руками не получилось, хоть и покупал лампы, дроссели, трансформаторы, потому как отец приобрёл у какого-то радиолюбителя брошенный на полпути усилитель, который так и не заиграл… Пришлось изменить схему фазоинвертора и уменьшить номиналы резисторов (до справочных) в цепи управляющей сетки выходных ламп на землю, так как эти лампы со временем запирались и ток через них не шёл, сводя коэффициент усиления до нуля.

Окончательный вариант схемы привожу ниже. Регулятор громкости исключён за ненадобностью. В принципе, схема простая и в особых пояснениях не нуждается. Электролит в катоде входной лампы специально выбран с небольшой ёмкостью, дабы снизить усиление на низких частотах (не люблю я их) за счёт обратной связи по току. Пила в катодной (и анодной цепи) была сглажена установкой дросселя после диодного моста. Дольше всего боролся с самовозбуждением на частотах от 100 kHz и выше. Резисторы 4.7k перед сеткой выходной лампы и керамика, шунтирующая электролиты в анодном питании оттуда. Так же и сетку пробовал заземлять через ёмкость, и что-то вроде RC-фильтра туда же ставил — всё было бестолку. До тех пор, пока сигнальный шнур от компьютера к усилку не выдернул. Весь ультразвуковой мусор исчез, поскольку шёл со звуковой карты. Будет мне наука на будущее, что бы с ветряными мельницами не сражался.

Фон переменного тока снизился ниже порога слышимости (если не прикладывать голову к колонке) после того, как установил среднюю точку от накала входной лампы на землю, через пару резисторов на 4.7k

Честно говоря, захватившая меня идея заиметь и услышать ламповый звук, вызывала кое-какие сомнения или опасения. Волновал один вопрос, а именно — стоит ли игра свеч? Услышу ли я какую-либо разницу? Если почитать интернеты, то складывается такое впечатление, что услышу всенепременно. Но ведь там же можно почитать и про то, как у людей басы отлипают от динамиков после обматывания межблочного кабеля тремя слоями изоленты. Или же описывают чудесные изменения в звуке от замены простого акустического кабеля на волшебный по 300$ за метр (с обязательной прослушкой правильного направления подключения и с предварительным прогревом кабеля правильной музыкой, что бы электроны нарезали хорошие траектории в проводнике) и прочую мутотень.

Однако то, что я услышал, полностью оправдало и даже превзошло все мои ожидания. Звук приобрёл детальность. Акустическая гитара стала похожа на акустическую гитару, завывания ветра превратилось в завывание ветра, а чирикающие птички на заднем плане стали чирикающими птичками, а не непонятным шумом, принимаемом мною за искажения. Хотя не знаю, как можно описать это словами — это нужно услышать. Прослушав композицию с лампы, тут же повторил её усилителем Романтика 50У-220С и отдельно на Microlab Solo-3 Mk2. Звук стал мутным. Такое чувство, что высокие частоты выкрутили вниз темброблоком, однако последующий подъём высоких частот ситуацию не исправляет — только добавляется всяких щелчков, свиста и прочего шума из высокочастотных динамиков.

Я не буду утверждать, что транзистор фигня, убивает душу и т.д. и т.п. У меня не идеальная эталонная система для сравнения, думаю, что найдётся транзисторный или интегральный усилитель с таким же детализированным звуком (цена вопроса только будет совсем другая). Тем более, что прослушивал музыку я не на Hi-End колонках, а с СОЮЗ 50АС-012. Да и вообще, говорить про убийство звука транзистором абсурдно. Источник сигнала у меня цифровой, весь тракт до одного вольта — полупроводниковый. Да чего уж там мелочиться, уже на студии, в процессе записи музыки, сигнал мог пройти через 300-400 транзисторов (информация из какой-то статьи Лихницкого). Если звук умер уже неоднократно, то с какого перепугу он должен воскреснуть в лампе?

Ладно, отставлю в сторону болтовню и размышления. Добавлю ка ещё пару фотографий.

Обратная связь со мной возможна здесь, в моём журнале, по тегу — звук — записи данной направленности.

Современное состояние

В настоящее время вакуумные триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен М — ГГц большой мощности при небольшом числе активных компонентов, а габариты и масса не столь критичны, — например, в выходных каскадах радиопередатчиков. Мощные радиолампы имеют сравнимый с мощными транзисторами КПД; надёжность их также сравнима, но срок службы значительно меньше. Маломощные триоды имеют невысокий КПД, так как на накал тратится значительная часть потребляемой каскадом мощности, порой более половины от общего потребления лампы.

Также на базе ламп всё ещё делается некоторая часть высококачественной акустической усилительной аппаратуры классов Hi-Fi и Hi-End, несмотря на то, что фиксируемый приборами коэффициент нелинейных искажений у почти любых современных транзисторных приборов во много раз меньше, чем у ламповых.[источник не указан 2443 дня

] Несмотря на высокую стоимость, такая аппаратура весьма популярна у музыкантов и аудиофилов благодаря её так называемому более «тёплому», «ламповому» звучанию, которое якобы воспринимается человеком как более естественное и близкое к тому, что было при записи исходного звука. Триод — простая по конструкции лампа, имеющая при этом высокий коэффициент усиления, поэтому она хорошо вписывается в один из принципов построения альтернативной звукотехники — принцип минимализма, то есть предельной простоты аппаратуры.

Сравнение ВАХ 6Н2П и 6Н9С

6Н9С и 6Н2П — весьма известные и распространённые двойные триоды. Принято считать, что 6Н9С и 6Н2П являются прямыми аналогами. Если поискать в Сети справочные данные на 6Н9С, то можно найти фразу «Лампа 6Н9С может быть заменена аналогичным двойным триодом 6Н2П. Результаты замены эффективны.» Удалось найти первоисточник этой цитаты — это Д.С. Гурлев «Справочник по электронным приборам» Государственное издательство технической литературы УССР, Киев 1962. Страница 220. Там же на странице 199 сказано, что «Лампа 6Н2П является аналогом 6Н9С. Обе лампы взаимозаменяемы.Схемы применения лампы 6Н2П и лампы 6Н9С одинаковы». Используя свой характериограф, решил провести небольшое исследование и проверить схожесть Вольт-Амперных характеристик (ВАХ) этих радиоламп.

Были исследованы 4 наугад взятые из коробки радиолампы каждого типа.

6Н2П производства Калужского радиолампового завода «Восход».

  • 1 6Н2П-В VI-67
  • 2 6Н2П V-64
  • 3 6Н2П X-71
  • 4 6Н2П X-69

На фото видно, что экземпляры 1 и 2 по конструкции похожи, но есть различие в материале анода. Раньше думал, что только у 6Н2П с индексом В/ЕВ конструкция анода иначе и металл блестящий.

6Н9С Производства Саратовского завода «Рефлектор» и Московского завода МЭЛЗ.

  • 1 6Н9С IX-68
  • 2 6Н9С II-70
  • 3 6Н9С X-59
  • 4 6Н9С IV-64

ВАХ 6Н2П

«Беглое» измерение всех экземпляров 6Н2П. ВАХ похожи на те, что публикуются в справочниках. Разброс половинок небольшой, но 4-ый экземпляр нарушает эту идиллию.

Более подробные измерения «среднего экземпляра — Nr.2

6Н2П параллельное включение триодов в баллоне

В некоторых конструкциях можно увидеть параллельное включение триодов в одном баллоне. Интересно, как это выглядит на ВАХ? Подробные измерения «среднего экземпляра — Nr.2» при параллельном включении триодов в одном баллоне. ВАХ и АСХ.

ВАХ 6Н9С

«Беглое» измерение 6Н9С. Картина похожа на 6Н2П. ВАХ похожи на те, что публикуются в справочниках. Разброс половинок небольшой.

Более подробные измерения «среднего экземпляра — Nr.4»

6Н9С параллельное включение триодов в баллоне

Аналогично 6Н2П, решил измерить 6Н9С при параллельном включении триодов в одном баллоне. Подробное измерение «среднего экземпляра — Nr.4»

Заключение

Вместо заключения все ВАХ на одном графике. Черный — 6Н2П, фиолетовый — 6Н9С. Из общей картинки исключены ВАХ 4-го экземпляра 6Н2П и первого экземпляра 6Н9С, из-за их большего отличия от остальных.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: