Описание динистора db3. как его проверить?

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г. Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Цветовая маркировка диодов в корпусах SOD-80

Корпус SOD-80, известный также как MELF, представляет из себя маленький стеклянный цилиндр с металлическими выводами.

Примеры маркировки диодов.

Маркировка 2Y4 к 75Y (E24 серия) BZV49 1W кремниевый стабилитрон (2.4 – 75V) Маркировка C2V4 к C75 (E24 серия) BZV55 500mW кремниевый стабилитрон (2.4 – 75V)

Катодный вывод помечен цветным кольцом.

Маркировка приборов цветными кольцами.

Вывод катода Прибор
Черный (Black) BAS32, BAS45, BAV105 LL4148, 50, 51,53, LL4448 BB241,BB249
Черный и кочичневый (Black Brown) LL4148, LL914
Черный и оранжевый (Black Orange) LL4150, BB219
Коричневый и зеленый (Brown Green) LL300
Коричневый и черный (Brown Black) LL4448
Красный (Red) BA682
Красный и оранжевый (Red Orange) BA683
Красный и зеленый (Red Green) BA423L
Красный и белый (Red White) LL600
Оранжевый и желтый (Orange Yellow) LL3595
Желтый (Yellow) BZV55,BZV80,BZV81 series zeners
Зеленый (Green) BAV105, BB240
Зеленый и черный (Green Black) BAV100
Зеленый и кочичневый (Green Brown) BAV101
Зеленый и красный (Green Red) BAV102
Зеленыый и оранжевый (Green Orange) BAV103
Серый (Gray) BAS81, 82, 83, 85, 86
Белый (White) BB219
Белый и зеленый (White Green) BB215

Некоторые SMD-диоды в цилиндрических корпусах MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41) часто маркируются цветными полосками (первая, ближняя к краю полоска расположена у катода) в соответствии с таблицей слева.

Цветовая маркировка стабилитрона

Для обозначения параметров стабилитрона используются цветные отметки, выполненные в виде опоясывающих корпус полосок. Отрицательный контакт (катод) обозначается черной (иногда серой) полосой. Необходимо учитывать, что у отечественных деталей черное кольцо может обозначать как катод, так и анод. На импортных деталях цветные кольца находятся ближе к отрицательному выводу.

Цвет (или сочетание цветов) полосок обозначает тип стабилитрона. Это несколько усложняет процесс идентификации, так как надо сначала определить сам тип стабилитрона, потом найти сведения о его параметрах. Однако, малый размер деталей не позволяет нанести подробную информацию, поэтому приходится решать вопрос наиболее надежным способом. Маркировка не стирается, не меняет цвет при нагреве, что позволяет определить номинал и тип стабилитрона даже после короткого замыкания прибора.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжение пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 Kb, скачано: 7 491)

Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.

Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 KiB, скачано: 11 924)

Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

При написании данной статьи использовался материал с этого видео

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет «оседать» напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

где

P — мощность, Вт

Vf — прямое падение напряжение на диоде, В

I — сила тока через диод, А

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Аналоги

Для замены M7 могут подойти диоды кремниевые, диффузионные, выпрямительные, предназначенные для использования в источниках питания и преобразовательных устройствах аппаратуры общего назначения.

Отечественное производсто

Тип URRM IF(AV) IFSM TJ UFM IRMTA = 25°C IRMTA = 125°C Корпус
SM4007 1000 1 30 -55°C.…+125°C 1 2,5 50 SMA-W(DO-214AB)
КД210В 1000 10 50 ≤ 140°С 1 ≤ 4,5 мА КД-11
2Д220Г/И 1000 3 60 1,2/1,0 45 мкА 1,5 мА КД-10
2Д230Г/И 1000 3 60 -60°C.…+125°C 1,5/1,3 45 мкА 1,5 мА КД-11
КД243Ж 1000 1 6 -60°C….+125°C 1,1 10 мкА 0,1 мА КД-4Б
КД248А/Б/К 1000 3,0/1,0/1,5 9,6/3,2/4,8 -60°C…+125°C 1,4 40 мкА КД-16
2Д254 1000 1 3,2 1,5
КД257Д 1000 3 15 -60°C….+85°C 1,5 0,2 мА КД-29С
КД258Д 1000 3 7,5 -60°C….+85°C 1,6 2 мкА КД-29А

Зарубежное производство

Тип URRM/URSM/UDC, В IF(AV), А IFSM, А TJ, °С UFM, В IRM, мкАTA = 25°C IRM, мкА TA = 125°C RƟJL, °C/Вт RƟJA, °C/Вт CJ, пФ Корпус
SM4007 1000/700/1000 1 30 -55°C.…+125°C 1 2,5 50 55 12 SMA-W(DO-214AB)
1N4145 1000/700/1000 3 300 -55°C….+150°C 1 10 100 20 35 DO-27
1N4249 1000/700/1000 1 40 -65°C…+200°C 1,2 1 25 GPR-1A
1N4948 1000/700/1000 1 30 -65°C….+150°C 1,3 5 50 50 15 DO-41
1N5054 1000/700/1000 1,5 48 -65°C….+170°C 1,3 500 DO-41
1N5408 1000/700/1000 3 200 -65°C….+200°C 1 5 100 40 50 DO-201AD
1N5622 1000/700/1000 1 50 -65°C….+200°C 1,2 0,5 25 35 GPR-1A
BY133 1300/940/1300 1 30 -55°C…+150°C 1,1 5 200 50 15 DO-41
BY255 1300/- /1300 3 100 -50°C….+150°C 1,1 20 25 DO-201
BY227MGP 1250/875/1250 2 60 -65°C….+175°C 1,5 5 100 25 DO-15
BYD57M 1000/-/1000 1 5 -65°C…+175°C 2,1 5 100 30 150 20 SOD87
BYT-11 URRM = 1000 1 35 -55°C….+150°C 1,3 20 60 F126
BYT51M URRM = 1000 1 50 -55°C…+175°C 1,1 1 100 45 DO-15
BYT54M 1000/700/1000 1,25 30 -55°C….+175°C 1,5 5 150 45 DO-41
BYV36E 1000/700/1000 1,6 30 -55°C…+150°C 1,45 5 100 45 18 DO-15
BYV96E 1000/700/1000 1,5 35 +175°C 1,6 5 150 50 DO-15
BYW56GP 1000/700/1000 2 50 -65°C….+175°C 1 5 100 35 50 DO-15 DO-204AC
GP210 1000/700/1000 2 70 -65°C…+175°C 1,1 5 50 40
GPP15M 1000/700/1000 1,5 60 -65°C….+175°C 1,1 5 25 DO-15
GPP10M 1000/700/1000 1 30 -65°C…+125°C 1 5 50 50 15 DO-41
GPP20M 1000/700/1000 2 70 -65°C….+125°C 1 5 50 40 20 DO-15
GP15M 1000/700/1000 1,5 50 -55°C…+150°C 1,1 5 100 20 DO-15
GP110 1000/700/1000 1 50 -65°C….+175°C 1 0,5 30 30 10 DO-41
MUR1100F 1000/700/1000 1 35 -55°C….+150°C 1,75 5 50 20 SOD-123F
RGP15M 1000/700/1000 1,5 50 -65°C….+175°C 1,3 5 200 30 25 DO-15
RGP110 1000/700/1000 1 50 -65°C….+175°C 1,2 0,5 25 55 15 DO-41

Те же данные представленны в виде картинки.

Примечание: данные таблиц получены из даташит компаний-производителей.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод

В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки

На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Маркировка импортных smd

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

SMD маркировка электрических элементов

Принцип нанесения обозначений состоит в зашифрованной передаче сведений о размерах и электрических параметрах чипа. Существует условное деление по количеству выводов и величине корпуса элементов:

Количество выводов Маркировка корпуса по возрастанию размера Краткое описание
Двухконтактные SOD (например, SOD128, SOD323 и т.п.) или WLCSP2 Пассивные чипы цилиндрической или квадратной формы, танталовые конденсаторы, диоды
Трехконтактные DPAK, D2PAK, D3PAK Автор данного корпуса — компания Моторола. Все элементы имеют одинаковую форму, но разный размер. Используются для полупроводниковых элементов, выделяющих тепловую энергию
Четырехконтактные и более WLCSP(N) (литера N обозначает число выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIP Контакты этих чипов размещены по двум противоположным боковым сторонам корпуса
Элементы с числом контактов более четырех LCC, PLCC, QFN, QFP, QUIP Выводы расположены по всем четырем сторонам корпуса
Выводы размещены в виде решетки BGA, uBGA Микросхемы, предназначенные для пайки с помощью специальной пасты
Безвыводные элементы μBGA, LFBGA Оснащены только контактными пластинками или каплями припоя

Чип конденсаторы

Существуют два основных типа конденсаторов — электролитические (корпус имеет форму цилиндра) и керамические или танталовые (корпус выполнен в виде параллелепипеда). На маркировке электролитов всегда присутствуют значения емкости и напряжения, а на керамических образцах — нет. Минус (катод) электролитов обозначен полоской, расположенной на верхней стороне корпуса.

Маркировка SMD резисторов

Маркировка представлена несколькими знаками — цифрами и буквами. Две первые цифры означают номинал, а третья (и четвертая) — порядок, или количество нолей. Например, число 322 означает 3200 Ом или 3,2 кОм. Иногда используется разделитель R, играющий роль запятой. Так, обозначение 3R2 значит 3,2 кОм. Или 0R32 — 0,32 кОм.

Есть специальные резисторы, выполняющие функции предохранителей или перемычек. У них нулевой номинал сопротивления.

Размеры SMD устройств стандартизированы и связаны с маркировкой. Так, чипы диодов, резисторов или конденсаторов типоразмера 0805 имеют параметры 0,6 × 0,8 × 0,23 дюйма (длина-ширина-высота).

SMD индуктивности

Форма и размеры корпусов дросселей и катушек индуктивности имеют те же величины, что и у резисторов или конденсаторов. Обозначение состоит из 4 цифр. Две первые — длина, другие — ширина чипа, выраженные в десятых долях дюйма. Например, маркировка дросселя 0805 значит, что его длина — 0,08, а ширина — 0,05 дюйма.

SMD диоды и транзисторы

Диодные чипы могут быть выполнены в виде бочонка или параллелепипеда (брикета). Все размеры полностью соответствуют параметрам резисторов, что упрощает разработку печатных плат. Учитывая специфику работы диодов, для которых необходимо соблюдать полярность, на отрицательном выводе или рядом с ним имеется полоска. Она обозначает катод, что позволяет избежать ошибок при монтаже.

На поверхности чипа может находиться только код, который не дает полной информации о параметрах детали. Поэтому существуют специальные информационные массивы — datasheet, располагающие сведениями о всех параметрах и возможностях элементов. Если необходимы полные данные о свойствах, которыми обладают транзисторы, datasheet дает возможность получить подробную информацию.

Используются корпуса двух типов:

  • SOT;
  • DPAK.

Помимо транзисторов в таком формате могут выпускаться диодные сборки, использующиеся в выпрямителях и драйверах.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

О функции диффузора

В режиме охлаждения и нагревания обеспечивает поступление
вентиляционными и кондиционирующими системами. воздушной массы, которая подается с верхней позиции.

Об особенностях работы

Создается закрученная приточная струя с высоким уровнем эжекции. Это позволяет подавать воздух в условиях значительного перепада температуры и в то же время достигать ее равномерного распределения в зоне обслуживания.

О конструкции

Стальной корпус, окрашенный методом напыления (в стандартном исполнении — белый, по запросу — любого другого цвета согласно каталогу), имеет присоединительный патрубок с расположенным в нем комплектом лопаток, регулировка угла наклона которых осуществляется путем возвратно-поступательного перемещения рычага и которые вращаются вокруг осей от 0 до 50 градусов к направлению потока воздуха. Тем самым может формироваться три его типа: компактная с большой дальнобойностью (0°), смыкающаяся конической формы (30°) и настилающаяся веерная (50°). Регулирование — электропривод AST 04 или AST 04.S ADM 04.

О способе монтажа

Устройство предназначено для установки на открытых отводах круглых воздуховодов или в подвесных потолках (скрытая прокладка), на которые при этом настилается горизонтальная струя. Крепление выполняется с помощью самонарезающих винтов. Герметичное соединение обеспечивается прокладкой из резины. Диаметры (в мм): А — 314, В — 474. Вес — 6,1 кг.

Структура обозначения диффузоров ДКВ

ДКВ ØD — XXX RALXXXX
где:
ДКВ — тип воздухораспределителя;
ØD — типоразмер, мм;
XXX — тип привода: E1 — AST04, E2 — ADT04, E3 — AST04.S, E4 — ADT04.S, M2 — ADM04;
RALXXXX — цвет окраски по каталогу RAL (при стандартном белом цвете RAL9016 буквосочетание RAL и номер цвета не указываются).

Пример обозначения при заказе вихревого диффузора ДКВ с приводом AST04, с наружным диаметром корпуса 250 мм. Цвет изделия стандартный — белый RAL9016:
ДКВ 250 — E1

Характеристики диффузоров ДКВ

Модель

F0, м2

ØA, мм

ØB, мм

C, мм

Вес, кг

ДКВ 200

0,031

199

361

195

3,2

ДКВ 250

0,049

249

411

209

4,0

ДКВ 315

0,078

314

474

240

5,2

ДКВ 355

0,099

354

516

250

6,0

ДКВ 400

0,126

399

561

265

7,2

ДКВ 500

0,196

499

673

320

9,9

ДКВ 200-E1 (Е3, M2)

0,031

199

361

195

4,1

ДКВ 250-E1 (Е3, M2)

0,049

249

411

209

4,9

ДКВ 315-E1 (Е3, M2)

0,078

314

474

240

6,1

ДКВ 355-E1 (Е3, M2)

0,099

354

516

250

6,9

ДКВ 400-E1 (Е3, M2)

0,126

399

561

265

8,1

ДКВ 500-E1 (Е3, M2)

0,196

499

673

320

10,7

Характеристики электроприводов

Модель диффузора ДКВ…-Е1 ДКВ…-Е3 ДКВ…-М2
Тип привода*   AST04 AST04S ADM04
Сигнал управления   2-х позиционный 3-х позиционный 0–10 В
Напряжение,  В/Гц 230/50 230/50 24/50
Потребляемая мощность,  Вт 4 4 2,5
Степень защиты   IP 42 IP 42 IP 42

Данные для подбора диффузоров ДКВ при подаче воздуха

Модель LwA=25 дБ(А) LwA=35 дБ(А) LwA=45 дБ(А) LwA≤60 дБ(А)
L, ∆Pпол  Дальнобой- L, ∆Pпол  Дальнобой- L, ∆Pпол  Дальнобой- L, ∆Pпол  Дальнобой-
ность, м ность, м при ность, м при ность, м
м3/ч Па при Vx,м/с м3/ч Па Vx,м/с м3/ч Па Vx,м/с м3/ч Па при Vx,м/с
0,2 0,5 0,75 0,2 0,5 0,75 0,5 0,75 0,5 0,75
Компактная струя при α=0° (схема 1)
200 300 8 16 6 4,2 440 17 23 9 6 640 37 13 9 1090* 106 23 15
250 600 9 25 10 6,7 890 20 37 15 10 1060 28 18 12 2100* 110 35 24
315 890 8 30 12 7,9 1230 15 41 16 11 1680 28 22 15 2740* 74 37 24
355 1100 7 33 13 8,7 1510 14 45 18 12 2070 26 24 16 3310* 67 39 26
400 1610 10 42 17 11 2190 18 57 23 15 2710 28 28 19 4670* 83 49 33
500 1610 4 34 14 9 2560 10 54 22 14 3910 24 33 22 7280* 83 61 41
Коническая смыкающаяся струя при α=30° (схема 2)
200 200 5 5 1,9 1,3 300 11 7 2,8 1,9 460 27 4 2,9 680 59 6 4,3
250 370 7 7 2,8 1,9 570 16 11 4,3 2,9 890 38 7 4,5 1060 54 8 5,3
315 750 11 11 4,5 3,0 1020 20 15 6,1 4,1 1380 36 8 5,5 1680 54 10 6,7
355 870 9 12 4,6 3,1 1240 18 16 6,6 4,4 1760 37 9 6,2 2140 54 11 7,6
400 1070 8 13 5,0 3,4 1570 18 18 7,4 4,9 2260 37 11 7,1 2710 54 13 8,5
500 1520 7 14 5,7 3,8 2240 15 21 8,4 5,6 3230 31 12 8,1 4240 54 16 11
Настилающаяся веерная струя при α=50° (схема 3)**
200 190 19 4,0 1,6 1,1 270 38 5,7 2,3 1,5 370 71 3 2,1 590 180 5,0 3,3
250 330 17 5,6 2,2 1,5 490 37 8,3 3,3 2,2 710 77 5 3,2 1060 173 7,2 4,8
315 470 13 6,3 2,5 1,7 670 27 9 3,6 2,4 960 56 5 3,4 1630 162 8,8 5,8
355 670 17 8,0 3,2 2,1 940 33 11 4,5 3,0 1320 66 6 4,2 2140 173 10 6,8
400 690 11 7,3 2,9 1,9 1030 25 11 4,4 2,9 1500 53 6 4,2 2550 153 11 7,2
500 1190 14 10 4,0 2,7 1730 29 15 5,9 3,9 2500 60 9 5,6 4240 173 14 9,6
* Значения L, приведённые в графе «LwA≤60 дБ(А)» для компактного потока при α=0° применяются в случаях допустимой
скорости в подводящем патрубке 6<v≤12 м/с; 
**При подаче воздуха свободными струями (в условиях отсутствия настилания) величину дальнобойности, указанную в таблице,необходимо умножить на коэффициент 0,7.

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельсия.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится. Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.

Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода. В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

При подобной проверке рекомендуется замерять напряжение, при котором загорается светодиод. То есть, напряжение пробоя, которое понадобится для дальнейшей работы с прибором.

Помимо данной схемы, существует способ проверки с помощью осциллографа.

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов:

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: