Ку 221 характеристика простейшие схемы включения

Принципиальная схема

Принципиальная схема фазового регулятора мощности, предназначенного для управления лампой накаливания в настольном светильнике, показана на рис. 1. В силовом ключе устройства использованы две штуки тринисторов серии КУ221, включенных встречно-параллельно.

Тринисторы этой серии отличаются значительно более высокой надёжностью, чем популярные в прошлом веке отечественные тринисторы серий КУ201, КУ202 и симисторы серии КУ208 .

Рис. 1. Принципиальная схема фазового регулятора мощности на тиристорах КУ221.

Также, тринисторы серии КУ221 устойчивы к значительным кратковременным перегрузкам, например, легко переживают событие перегорания лампы накаливания, во время которого внутри колбы образуется дуговой разряд, в то время, когда большинство импортных мощных симисторов в корпусе ТО-220, при этих обстоятельствах получают пробой кристалла.

Напряжение сети переменного тока 230 В поступает на силовой ключ через замкнутые контакты выключателя питания SA1, плавкий предохранитель FU1 и двухобмоточный дроссель L1. Фильтр C1L1C2 уменьшает уровень помех, как поступающих от работающего фазового регулятора в сеть питания, так и в обратную сторону. На тринисторы серии КУ221 допускается подача обратного напряжения не более 50 В, поэтому они включены через диоды VD5, VD6, которые защищают тринисторы от обратного напряжения.

К управляющим выводам мощных тринисторов через токоограничительный резистор R1 подключен мостовой диодный выпрямитель VD1 – VD4. Выпрямленное сетевое напряжение через резистор R6 поступает на узел управления, выполненный на аналоге однопереходного транзистора VТ3, VТ4.

Когда напряжение на выводе базы VТ4 станет больше -0,6 В относительно вывода эмиттера этого транзистора, VТ3, VТ4 лавинообразно откроются, конденсатор С3 быстро разрядится через открытые переходы этих транзисторов, токоограничительный резистор R5 и эмиттерный переход транзистора VТ1. Высоковольтные транзисторы VТ1, VТ2 включены как аналог чувствительного маломощного тринистора, в момент разряда СЗ лавинообразно открываются, ток через управляющие электроды мощных тринисторов VS1, VS2 увеличивается.

В зависимости от направления полуволны сетевого напряжения переменного тока открывается, или тринистор VS1, или VS2. На подключенную нагрузку – лампу накаливания EL1 через помехоподавляющий фильтр L2C4 поступает напряжение питания. Уровень поступающей на нагрузку мощности регулируют переменным резистором R11, чем меньше установленное сопротивление этого резистора, тем большая мощность подаётся в нагрузку. Фазовую задержку открывания симисторов обеспечивает конденсатор СЗ. Последовательно включенные светодиод HL1 и стабилитрон ограничивают рост напряжения на элементах регулировочного узла.

Этот регулятор рассчитан на управление подключенной нагрузкой, потребляющей мощность до 250 Вт. Следует отметить, что большинство светильников – настольных ламп, даже изготовленных в цельнометаллическом корпусе, рассчитаны на эксплуатацию с лампой накаливания мощностью не более 60 Вт. Плавкий предохранитель FU1 установлен на относительно большой ток с целью сохранить свою целостность в момент перегорания лампы накаливания.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;

  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Детали и конструкция

Большинство деталей устройства установлены на полукруглой монтажной плате, размеры и форма которой подогнаны под установку в металлическом корпусе основания диаметром 165 мм отечественной настольной лампы модели ННБ37-60-018 УХЛ4, изготовленной по ГОСТ 8607-82.

Для изоляции токоведущих элементов конструкции от корпуса светильника используется плотная стеклоткань, приклеенная двусторонней монтажной липкой лентой и клеем «БФ».

Рис. 2. Цоколевка транзисторов КТ502, КТ503 и тиристора КУ221.

Переменный резистор применён типа СПЗ-35, можно заменить, например, на СПЗ-30а, СП-1, СПЗ-12, СПЗ-4, СПЗ-33-32 или аналогичный. На ось переменного резистора должна быть надета регулировочная ручка из изоляционного материала. Остальные резисторы типов РПМ, МЯТ, С1-4, С1-14, С2-14, С2-33 или аналоги.

Конденсатор С1 керамический типа К15-5, вместо такого конденсатора можно установить любой керамический или плёночный на рабочее напряжение постоянного тока не менее 630 В или переменного не менее 275 В, например, К73-17, К73-24, К73-39. Такими же конденсаторами можно заменить С2 и С4. Конденсатор C3 плёночный малогабаритный.

Вместо диодов GUR460 можно установить FR304 — FR307, FR604G — FR607G, PR3004 -PR3007, SRP300J, 1 N5404 — 1N5408, КД257Б — КД257Д, КД202М, 2Т202Т.

Диоды 1N4007 заменимы на 1N4005, 1N4006, UF4005- UF4007, RU3AM, 1N4936GP, 1N4937GP, FR155 — FR157, КД209Б, КД221В, КД243Г, КД247Д. Вместо светодиода АЛ316А красного цвета свечения подойдёт любой из серий АЛ341, КИПД21, КИПД40, L-1503, RL52, RL54, DB5-436. Для светодиода в основании светильника просверлено дополнительное отверстие.

Вместо стабилитрона Д814Д подойдёт любой из Д814Д1, КС213Ж, 1N4743A, 1N4743A,BZV55C-12,BZV55C-13, TZMC-13. Вместо транзистора KF13001 подойдёт MJE13001, MJE13002, MJE13003, MJE340, BF420, BF393, М PSA-42, 2N6517.

Транзистор BF421 заменим на BF493, MJE350, 2N6520, 2SA1625, 2SA1700, MPSA-44. Вместо транзистора КТ503Б подойдёт любой из серий КТ503, КТ3117, КТ6111, КТ6113, КТ645, SS8050, 2SC2116, 2SD261, SS8050, SS9013. Транзистор КТ502Е, можно заменить любым из КТ502, КТ209, КТ6112, КТ6115, КТ639, SS8550, SS9012, 2SA643, 2SA1048, 2SA1150, 2SA1378.

Учитывайте, что транзисторы даже одного типа, но разных изготовителей, могут иметь отличия в цоколёвке выводов. Тринисторы КУ221 работают без дополнительного металлического теплоотвода, можно устанавливать в паре тринисторы с разными буквенными индексами. Цоколёвка выводов применённых транзисторов и тринисторов показана на рис. 2.

Выключатель SA1 установлен клавишный на шнуре питания светильника. Двухобмоточный дроссель L1 применён готовый от компьютерного БП, выполненный на Ш-образном ферритовом сердечнике.

Подойдёт любой аналогичный с общим сопротивлением обмоток до 2 Ом, индуктивность, чем больше, тем лучше. Дроссель L2 самодельный, намотан на двух ферритовых стержнях 400НН диаметром 8 мм, длиной по 40 мм. На каждом стержне намотано по 60 витков обмоточного провода диаметром 0,39 мм, намотка виток к витку поверх двусторонней липкой бумажной ленты.

Катушки дросселя располагают параллельно одна другой так, чтобы их магнитный поток был замкнутым. Дроссели и конденсаторы LC фильтров обёрнуты стеклотканью и приклеены к внутренней стороне основания корпуса светильника.

Характеристики тиристора КУ208Г

Технические характеристики КУ208Г оптимальны в схемах включения для коммутаций силовой автоматики, работающей на переменном токе. Строго говоря, он является кремниевым не запираемым симистором средней мощности. Его внутренняя структура p-n-p-n.

Цоколевка

Перед тем как использовать в своих проектах КУ208Г, ознакомьтесь с цоколевкой. Она приведена на рисунке ниже и несёт информацию о расположении и назначении контактов. Данный тиристор изготавливается в металлостеклянной упаковке, имеющей жёсткие выводы. Маркировка прибора нанесена на корпус. Масса не превышает 12 г.

Технические характеристики

Чтобы не ошибиться с выбором тиристора, нужно сначала обратить внимание на максимально допустимые эксплуатационные характеристики. Если хотя бы один из параметров превысит эти значения, то прибор выйдет из строя

Все требуемые для расчётов схем данные приведены в таблице.

Кроме предельно допустимых параметров, существуют также электрические, которые показывают, на что способно данное устройство. Все эти параметры тестируются производителем при стандартной температуре окружающей среды + 25 О С.

Cхемы включения

Разберём схему регулятора мощности на тиристоре КУ208Г, являющуюся типичной. На ее примере можно понять принцип работы симистора. Рассматриваемое устройство можно использовать для подключения паяльника, электрической лампочки и других устройств.

Здесь на электрод тиристора, от электрической сети 200В, подаётся переменное напряжение. Кроме этого на управляющий электрод, через диодный мост VDS1, сопротивление R1 и R2, поступает постоянное отрицательное напряжение. Когда порог открытия будет превышен, симистор откроется, а при смене сетевого напряжения закроется. На следующей синусоидальной волне весь процесс повторится.

Резистором R2 регулируется напряжение на управляющем электроде. При его увеличении этом симистор будет быстрее включаться и длительность напряжения на нагрузке будет больше. Если уменьшить напряжение, подаваемое на управляющий электрод, продолжительность импульса и напряжение на нагрузке сократится.

Содержание драгметаллов

Как и во многих других радиодеталях, в определённых типах симисторов при производстве используются драгоценные металлы. Что касается рассматриваемого КУ208Г, то в разных источниках, информация о содержании ценных веществ разнится. Достоверно одно — в этом тиристоре содержится золото. Приведём фрагмент этикетки на изделие, в которой указано что в 1000 шт. содержится 1,4765г благородного металла. Получается, что из одного можно извлечь 0,001477г.

Аналоги

Среди отечественных приборов, аналогов КУ208Г не существует. Есть похожие изделия от зарубежных производителей: TAG307-800, BTA08-400. Однако они обычно выпускаются в корпусе ТО-220АВ. Поэтому при их монтаже может потребоваться доработка печатной платы.

Производители

Изготовлением тиристора КУ208Г занимается предприятие ООО «Саранский завод точных приборов» (скачать Datasheet). Больше ни одна компания не занимается выпуском этого устройства. В продаже встречаются только устройства этого завода.

голоса

Рейтинг статьи

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Конструкция и принцип действия

Состоит тиристорный ключ из трех частей:

  • Анод.
  • Катод.
  • Вход.

Последний состоит из трех переходов p-n. При этом переключение переходов производится с очень большой скоростью. Вообще, принцип работы тиристора можно объяснить лучше, если рассмотреть схему связки двух транзисторов, связанных параллельно, как выключатели комплементарно регенеративного действия.

Конструкция тиристора

Итак, самая простейшая схема двух транзисторов, совмещенных так, чтобы при пуске ток коллектора поступал на NPN второго прибора через каналы NPN первого. А в это же время ток проходит обратный путь через первый транзистор на второй. По сути, получается достаточно простая связка, где база-эмиттер одного из транзисторов, в нашем случае второго, получает ток от коллектора-эмиттера другого прибора, то есть, первого.

Цепь постоянного тока

В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:

  • Вид нагрузки (индуктивный, активный и прочее).
  • Скорость нарастания импульса и его амплитуда, имеется в виду ток нагрузки.
  • Величина самой токовой нагрузки.
  • Напряжение в цепи.
  • Температура самого прибора.

Детали и конструкция

Большинство деталей устройства установлены на полукруглой монтажной плате, размеры и форма которой подогнаны под установку в металлическом корпусе основания диаметром 165 мм отечественной настольной лампы модели ННБ37-60-018 УХЛ4, изготовленной по ГОСТ 8607-82.

Для изоляции токоведущих элементов конструкции от корпуса светильника используется плотная стеклоткань, приклеенная двусторонней монтажной липкой лентой и клеем «БФ».

Рис. 2. Цоколевка транзисторов КТ502, КТ503 и тиристора КУ221.

Переменный резистор применён типа СПЗ-35, можно заменить, например, на СПЗ-30а, СП-1, СПЗ-12, СПЗ-4, СПЗ-33-32 или аналогичный. На ось переменного резистора должна быть надета регулировочная ручка из изоляционного материала. Остальные резисторы типов РПМ, МЯТ, С1-4, С1-14, С2-14, С2-33 или аналоги.

Конденсатор С1 керамический типа К15-5, вместо такого конденсатора можно установить любой керамический или плёночный на рабочее напряжение постоянного тока не менее 630 В или переменного не менее 275 В, например, К73-17, К73-24, К73-39. Такими же конденсаторами можно заменить С2 и С4. Конденсатор C3 плёночный малогабаритный.

Вместо диодов GUR460 можно установить FR304 — FR307, FR604G — FR607G, PR3004 -PR3007, SRP300J, 1 N5404 — 1N5408, КД257Б — КД257Д, КД202М, 2Т202Т.

Диоды 1N4007 заменимы на 1N4005, 1N4006, UF4005- UF4007, RU3AM, 1N4936GP, 1N4937GP, FR155 — FR157, КД209Б, КД221В, КД243Г, КД247Д. Вместо светодиода АЛ316А красного цвета свечения подойдёт любой из серий АЛ341, КИПД21, КИПД40, L-1503, RL52, RL54, DB5-436. Для светодиода в основании светильника просверлено дополнительное отверстие.

Вместо стабилитрона Д814Д подойдёт любой из Д814Д1, КС213Ж, 1N4743A, 1N4743A,BZV55C-12,BZV55C-13, TZMC-13. Вместо транзистора KF13001 подойдёт MJE13001, MJE13002, MJE13003, MJE340, BF420, BF393, М PSA-42, 2N6517.

Транзистор BF421 заменим на BF493, MJE350, 2N6520, 2SA1625, 2SA1700, MPSA-44. Вместо транзистора КТ503Б подойдёт любой из серий КТ503, КТ3117, КТ6111, КТ6113, КТ645, SS8050, 2SC2116, 2SD261, SS8050, SS9013. Транзистор КТ502Е, можно заменить любым из КТ502, КТ209, КТ6112, КТ6115, КТ639, SS8550, SS9012, 2SA643, 2SA1048, 2SA1150, 2SA1378.

Учитывайте, что транзисторы даже одного типа, но разных изготовителей, могут иметь отличия в цоколёвке выводов. Тринисторы КУ221 работают без дополнительного металлического теплоотвода, можно устанавливать в паре тринисторы с разными буквенными индексами. Цоколёвка выводов применённых транзисторов и тринисторов показана на рис. 2.

Выключатель SA1 установлен клавишный на шнуре питания светильника. Двухобмоточный дроссель L1 применён готовый от компьютерного БП, выполненный на Ш-образном ферритовом сердечнике.

Подойдёт любой аналогичный с общим сопротивлением обмоток до 2 Ом, индуктивность, чем больше, тем лучше. Дроссель L2 самодельный, намотан на двух ферритовых стержнях 400НН диаметром 8 мм, длиной по 40 мм. На каждом стержне намотано по 60 витков обмоточного провода диаметром 0,39 мм, намотка виток к витку поверх двусторонней липкой бумажной ленты.

Катушки дросселя располагают параллельно одна другой так, чтобы их магнитный поток был замкнутым. Дроссели и конденсаторы LC фильтров обёрнуты стеклотканью и приклеены к внутренней стороне основания корпуса светильника.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Налаживание

Изготовленное из исправных деталей устройство начинает работать сразу. При желании, подбором конденсатора C3 можно установить минимальную устанавливаемую яркость свечения лампы накаливания.

Этот фазовый регулятор мощности можно также применить для регулировки рабочей температуры электропаяльников, для регулировки оборотов маломощных коллекторных электродвигателей, рассчитанных на подключение к сети переменного тока 230 В. Минимальная мощность подключаемой нагрузки может быть 8 Вт.

Бутов А.Л. РК-2016-05.

  1. Бутов А.Л. Фазовый регулятор мощности на некондиционных симисторах. — РК-2010-07.
  2. Бутов А.Л. Сенсорный регулятор мощности. -РК-2001-04.
  3. Бутов А.Л. Фазовый регулятор мощности на сильноточных тринисторах. — РК-2003-02.
  4. Бутов А.Л. Регулятор яркости для сети с нестабильным напряжением. — РК-2010- 08.

КУ221Б Тиристоры кремниевые, диффузионные, структуры p-n-p-n, триодные, незапираемые, импульсн, высокочаст

Тиристоры кремниевые КУ221Б, диффузионные, структуры p-n-p-n, триодные, незапираемые, импульсные, высокочастотные. Предназначены для применения в телевизионных приемниках цветного изображения при частоте до 30 кГц. Выпускаются в металлостеклянном корпусе с жесткими выводами. Тип тиристора приводится на корпусе. Масса тиристора не более 7 г.

Основные технические параметры тиристора КУ221Б: • Повторяющееся импульсное напряжение: 50 В; • Повторяющееся импульсное напряжение в закрытом состоянии: 750 В; • Максимальный повторяющийся импульсный ток в открытом состоянии: 100 А; • Средний импульсный ток в открытом состоянии: 3,2 А; • Импульсное напряжение в открытом состоянии: не более 3,5 В; • Неотпирающее постоянное напряжение управления: 30 В; • Повторяющийся импульсный ток в закрытом состоянии: не более 0,3 мА; • Отпирающий постоянный ток управления: не более 150 мА; • Импульсное отпирающее напряжение управления: не более 7 В; • Скорость нарастания напряжения в закрытом состоянии: 200 В/мкс; • Время выключения: не более 10 мкс; • Рабочий интервал температуры окружающей среды: -60. +125 °С

Аналоги тиристора КУ 202

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные

Но это не важно, главное убедиться в исправности тринистора

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электронная память
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: