История создания серебряно-цинковых элементов питания
Первую электрохимическую батарейку с элементами из серебра и цинка гениальный итальянский ученый-физик Вольта создал в далеком 1800 году. Но изобретение не получило распространения, применения на практике. В электродах возникал сильный саморазряд, не позволяющий регенерировать, использовать создающийся ток.
Еще одна попытка применить батарейки на практике была осуществлена в сороковых годах 19 века. Ученые изучили свойства цинка и серебра в электрохимической системе. Оптимальные результаты дали ампульные элементы питания. В них была встроена ампула для хранения электролита, который заливался в устройство в момент применения.
Что даёт добавление серебра?
Добавление серебра в элементы питания значительно повысило их устойчивость к
разрядам. Если раньше 3 полных разряда «съедали» 50% емкости, то после
модернизации емкостные потери стали минимальными даже после 10 глубоких
разрядов.
Серебру не страшна коррозия — у него хорошая устойчивость к кислоте. При
полном соблюдении условий эксплуатации АКБ такого вида будет служить на пару
лет дольше.
Иногда производители называют их полностью необслуживаемыми. Это не совсем
так, но расход воды в них действительно небольшой — доливать почти не надо.
Серебро снижает сопротивление электрода, и серебряно цинковые аккумуляторы
(СЦА) заряжаются и разряжаются быстрее – сила тока растет на 5-6%, а емкость
увеличивается на 4%. Пластины устойчивы к вибрации. Они тоньше, поэтому их
можно поставить численно больше.
То, что АКБ не нужно обслуживать — большой плюс автолюбителей, не имеющих
навыков ухода за оборудованием автомобиля. СЦА не требуют измерения плотности
электролита. После установки о них можно забыть — лишь изредка уделять время
подпитке.
Аккумуляторы с серебром подойдут для автомобилей с исправным
электрическим оснащением. Лучше, если в машине встроена система, автоматически
отключающая свет, габариты, музыку и другие потребители электричества.
Особенности конструкции серебряно-цинковых батареек
Гальванический элемент питания включает цинковый анод и катод из оксида серебра. В качестве электролита в конструкции используется щелочной раствор. Это могут быть гидроксиды калия (KOH) или натрия (NaOH).
В создании положительного электрода используется чашка, изготовленная из никелевой сетки. В нее запрессовывается оксид серебра. Конструкция устанавливается в корпус гальванического элемента питания, после чего запрессовывается.
Отрицательный электрод изготавливается посредством запрессовки массы опилок из цинка в двухслойной армированной крышке. Ее наружная часть никелируется, а внутренняя подвергается лужению. Эти детали крышки соединяются при помощи точечной сварки. В целях надежной герметизации прокладывается кольцо из полипропилена или полиэтилена. Это позволяет получить цельную, прочную деталь батарейки.
В конструкции гальванического элемента анод и катод разделены сепараторами двух типов — целлофанового и бумажного. Они пропитываются цинкатной щелочной электролитной жидкостью.
В процессе разряда батарейки происходит двухступенчатое восстановление двухвалентной окиси серебра. В первом цикле проходит реакция, в результате которой получается одновалентный оксид серебра:
2AgO + 2e- + H2O = Ag2O + 2OH-
Нормативный потенциал процесса восстановления одновалентного оксида серебра +0,344В. Первая стадия поляризуется, происходит разряд, восстановление двухвалентного оксида серебра. Показатель его стандартного потенциала составляет +0,57В. Благодаря ступенчатому восстановлению окиси и металлизированного серебра сохраняется стабильное разрядное напряжение. Плотность тока составляет 1мА/см2.
Минусы серебряной технологии
Итак, добавление серебра дало СЦА значительные преимущества перед батареями
других видов. Но, к сожалению, без минусов тоже не обошлось:
- Завышенная цена. Возможно, для кого-то это
несущественный фактор, но добавление серебра в цинковые батареи
увеличивает их цены на 1 000-1 500 рублей. - Незначительное содержание серебра (0,28-0,3%).
Пожалуй, последний фактор нельзя назвать минусом в полной мере. Вот вопрос:
почему бы не увеличить содержание серебра — ведь это привело бы к улучшению
характеристик?
Это невозможно выполнить технически. Пластины изготавливаются путем
штампования из закрученной в рулон ленты. Отливать их невозможно, поскольку
повышенная температура уничтожит структуру кальция. А если добавить хотя бы 1%
серебра в ленту, это приведет к образованию на ней микротрещин — она потеряет
эластичность.
Зачем нужны добавки в пластинах аккумуляторов?
Добавки придают АКБ разные свойства, но их главное назначение — увеличение
срока эксплуатации. Свинец — очень мягкий металл, он быстро разрушается. Ускорению
этого процесса способствуют процесс зарядки, а также нагрев летом и охлаждение
зимой. Для увеличения прочности батарее в нее добавляют другие материалы. Их
доля не превышает 2% от общей массы пластин.
Сначала в свинец добавляли сурьму. Это дало эффект — пластины перестали
сыпаться, срок их службы увеличился, появилась устойчивость к глубоким
разрядам. Но у этой добавки есть один большой недостаток: при полном заряде
аккумуляторная батарея выделяет газы. Это приводит к испарению воды из
электролита и к уменьшению уровня в банках. За такими батареями нужно постоянно
следить.
Добавление кальция уменьшало электролиз, а сам процесс начинался уже после
зарядки АКБ. Испарение в этом случае все-таки есть, но незначительное. Большого
обслуживания такой источник питания не требует, хотя есть один минус —
небольшая устойчивость к глубоким разрядам.
Есть еще и гибридные добавки — когда в элементе используют кальциевые и
сурьмянистые пластины. Кипение в этом случае уменьшается, устойчивость к
глубоким разрядам повышается. Все бы хорошо, но подобный аккумулятор нуждается
в постоянном обслуживании, поэтому ученые продолжили пытаться раскрыть
возможности кальциевой батареи.
В пластины добавили немного серебра — так появились серебряные аккумуляторы.
Конструкция серебряно─цинковых аккумуляторов
Серебряно─цинковые аккумуляторы собираются в корпусе из пластика. В качестве отрицательного электрода используются пластины из смеси порошка цинка (Zn) и окиси цинка (ZnO). Положительными электродами являются пластины из оксида серебра (AgO). На изображении ниже можно посмотреть конструкцию серебряно─цинкового электрода.
Конструкция серебряно─цинковых аккумуляторов
В результате такого подбора сепараторов пластины разной полярности имеют надёжную защиту от короткого замыкания. При этом имеется необходимая площадь соприкосновения пластин c электролитом. Когда формируется сборка пластин, то их плотно прижимают друг к другу и устанавливают прямо на дно корпуса. Никаких решёток для пластин в серебряно-цинковых аккумуляторах не применяется, поскольку материал электродов достаточно прочный и имеет высокую проводимость. Этот тип аккумуляторных батарей устойчив к ударному воздействию и вибрациям.
3
В серебряно-цинковых аккумуляторах протекает следующая обратимая реакция:
AgO + Zn ⇒ Ag + ZnO
Слева направо реакция идёт при разряде, справа налево протекает при заряде.
В таблице ниже приведены основные характеристики серебряно-цинковых аккумуляторных элементов.
ЭДС, В | 1,85 |
Рабочее напряжение, В | 1,55 |
Теоретическая удельная энергоёмкость, Вт-ч/кг | 425 |
Практическая удельная энергоёмкость, Вт-ч/кг | 150 |
Рабочая температура, С | от -40 до +50 |
Удельная энергоплотность, Вт-ч/куб. дм. | 650 |
Особенности эксплуатации серебряно-цинковых батарей
Этот тип аккумуляторных батарей имеет очень маленькое внутреннее сопротивление, а также большую величину удельной энергоёмкости. Основной отличительной особенностью серебряно-цинковых аккумуляторов можно назвать возможность высокой отдачи тока. На 1 А-ч ёмкости аккумулятора ток может достигать 50 ампер.
В процессе зарядки батареи образуется и окись серебра (AgO). Благодаря этому кривая напряжения при заряде и разряде идёт ступенчато. Отчётливо видны участки с более высокими значениями напряжения, которые соответствуют восстановлению (при разряде) или окислению (при заряде) серебра. При больших токах разряда ступенчатый характер изменения напряжения становится менее заметным.
Удельные характеристики этого вида аккумуляторных батарей также выше, чем у свинцово─кислотных и никель─кадмиевых.
Ниже можно посмотреть сравнение некоторых характеристик серебряно-цинковых, никель-кадмиевых, свинцово-кислотных стартерных аккумуляторов для автомобиля.
Тип аккумулятора | Режим разряда | Удельная ёмкость, Ач/кг | Удельная энергия, Вт-ч/кг | Удельная мощность, Вт/кг |
---|---|---|---|---|
Тип аккумулятора | Режим разряда | Удельная ёмкость, Ач/кг | Удельная энергия, Вт-ч/кг | Удельная мощность, Вт/кг |
Свинцово-кислотные | 5 минут 1 час 10 часов |
3,2-4,1 9-12,5 11-12,9 |
5,4-7 18-25 22-25 |
54-90 18-25 2,1-2,6 |
Никель-кадмиевые безламельные | 5 минут 1 час 10 часов |
21 23 23 |
16,4 27,3 29 |
197 27,3 2,9 |
Серебряно-цинковые | 5 минут 1 час 10 часов |
19-31 41-73 65-100 |
25-41 60-106 100-150 |
300-500 60-106 10-15 |
Серебряно-цинковые аккумуляторы хранятся без электролита долгое время. Чтобы привести в рабочее состояние элементы этого типа, нужно:
- предварительно провести их визуальный осмотр для выявления механических повреждений и коррозии элементов;
- далее аккумуляторы нужно залить электролитом. Для этого используется раствор едкого калия в воде с плотностью 1,4 гр./см3, который насыщен окисью цинка;
- провести формировочные циклы заряд-разряд, а затем контрольный и рабочий заряд батареи.
После визуального осмотра и заливки электролита у всех элементов проверяется ЭДС. Для нормальной работы аккумулятора электроды должны пропитаться электролитом. Чтобы ускорить этот процесс серебряно-цинковые аккумуляторы помещаются в барокамеру. Предварительно у них снимаются крышки с заливочных отверстий.
Размер серебряно-цинковых аккумуляторов
Когда аккумуляторы залиты, то проводится их формировка. Эта процедура заключается в проведении двух полноценных циклов заряд-разряд. При этом нужно контролировать полноту заряда по времени или по напряжению элемента.
После того, как серебряно─цинковый аккумулятор залит электролитом, храниться он должен при температуре 5—10 С. В таком режиме лучше сохраняется целлофан сепаратора.
В таблице ниже представлены характеристики объёма моделей серебряно-цинковых аккумуляторов, выпускаемых российскими производителями.
Маркировка аккумулятора | Вес АКБ с залитым электролитом, кг | Номинальная ёмкость (разряд 10 часов), Ач | Ток пяти минутного разряда, А |
---|---|---|---|
Маркировка аккумулятора | Вес АКБ с залитым электролитом, кг | Номинальная ёмкость (разряд 10 часов), Ач | Ток пяти минутного разряда, А |
СЦ-0,5 | 0,024 | 0,85 | 2 |
СЦ-1,5 | 0,035 | 1,8 | 3,5 |
СЦ-3 | 0,095 | 4,5 | 35 |
СЦ-5 | 0,16 | 7,5 | 60 |
СЦ-12 | 0,195 | 14 | 80 |
СЦ-15 | 0,245 | 16,5 | 95 |
СЦ-18 | 0,3 | 20 | 120 |
СЦ-25 | 0,47 | 27 | 150 |
СЦ-40 | 0,72 | 45 | 180 |
СЦ-45 | 0,76 | 50 | 200 |
СЦ-50 | 0,84 | 55 | 250 |
СЦ-70 | 1,35 | 80 | 400 |
СЦ-100 | 1,6 | 100 | 600 |
СЦ-120 | 1,9 | 130 | 650 |
Применение серебряно-цинковых батареек
Эти элементы не получили обширного применения из-за высокой цены на серебро. Однако они используются там, где необходимы компактные размеры и экологическая безопасность. Они обеспечивают питание:
- наручным часам;
- материнским платам ноутбуков и компьютеров;
- миниатюрным фонарикам;
- калькуляторам;
- брелкам;
- лазерным указкам;
- музыкальным открыткам и сувенирам, и др.
Саморазряд у элементов питания этого типа невысокий. Во время разрядов большими токами остается постоянное напряжение. Показатель отдачи тока у них близок к 100%, энергетическая отдача составляет примерно 85%. Благодаря этим показателям до появления литиевых источников серебряно-цинковые батарейки широко использовались в военной, авиационной, космической технике.
Специфика работы серебряно-цинковых батареек
Рассмотреть принцип работы серебряно-цинковых батареек, оценить их преимущества можно на примере популярного щелочного элемента питания ЭСЦГД-0,2. Эти источники тока устанавливаются в электронные наручные часы, оборудованные светодиодной индикацией цифр.
Этим изделиям требуется миниатюрный источник тока, способный не оказывать существенного влияния на вес и размер часов, обеспечить разряд необходимой мощности. С такой задачей может справиться только серебряно-цинковый тип электрохимической схемы.
Батарейка ЭСЦГД-0,2 обладает минимальными габаритами. Ее высота 5,4мм, диаметр 11,6мм. В элементе питания содержатся катоды, изготовленные из окисей одновалентного и двухвалентного серебра с показателями 0,16А-ч и 0,25 А-ч соответственно. При токе 1 мА напряжение разряда составляет 1,56В.
В обычном режиме работы часов разрядка элемента питания осуществляется в условиях плотности тока в диапазоне от 15 до 25 мкА. В период индикации цифр на табло часов батарейка разряжается в виде импульса. Плотность тока в данный момент составляет 50 мА 1 см2. Способность миниатюрного прибора разряжаться при таком высоком показателе плотности тока присуща только серебряно-цинковым элементам.
Правила эксплуатации кнопочных источников питания этого типа:
- использовать элементы рекомендуется при температуре от – 10°C до +55°C;
- хранить батарейки можно при температуре от — 40°C до +60°C;
- период хранения – до 4-х лет;
- срок эксплуатации источников тока – 2-4 года.
В мире есть несколько производителей серебряно-цинковых элементов питания. Основными брендами являются: Sony, RENATA, ENERGIZER, MAXELL, VARTA.
Технологии Silver и Silver PLUS — что это?
Эти технологии предусматривают добавление незначительного количества серебра
— примерно 0,3% от общего веса. Конечно, это приводит к увеличению цен батарей
на 15-20%.
Посмотрим, сколько это в граммах. Средний вес АКБ — 13 кг. Если исключить
корпус, останется около 10 кг. Примерно 33 гр при таком весе — серебро.
Некоторые считают, что в батареях целых 3% серебра, но это не так. Тогда бы
абсолютное содержание драгоценного металла составило 330 грамм. Представляете,
сколько бы стоила такая АКБ?
В Европе еще в середине 90 годов в кальциевые АКБ стали добавлять легирующие
материалы — как правило, серебро. Процент его содержания (0,28-0,3) был
определён опытным путем. Такие батареи сначаланазывали CA/AG, но позже маркетологи дали им более звучное название —
Silver и Silver PLUS.