Вольт-амперная характеристика
Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.
Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.
Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.
ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.
Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.
Кремниевые выпрямительные диоды Д242, Д242А, Д242Б Д243, Д243А, Д243Б Д244, Д244А, Д244Б Д245, Д245А, Д245Б Д246, Д246А, Д246Б Д247, Д247Б Д248Б
Диоды кремниевые
диффузионные.
Предназначены для преобразования
переменного напряжения с частотой
до 1,1 кГц в постоянное.
Корпус металлостеклянный с
жесткими выводами.
Обозначение типа и схема
соединения электродов с выводами
приводятся на корпусе.
Масса диода не более 12 г. (Масса с
комплектующими деталями 18 г.).
Электрические параметры:
Тип прибора |
Предельные значения параметров при Т=25С |
Значения параметров при Т=25С |
Тк.макс (Тп.) С |
|||||
Uобр.макс. (Uобр.и.макс.) B |
Iпр.макс. (Iпр.и.макс.) A |
Iпрг. A |
fраб. (fмакс.) kГц |
Uпр. B |
при Iпр. A |
Iобр. mA |
||
Д242 | (100) | 10,0 | — | 2 (10) | 1,25 | 10,0 | 3,0 | 130 |
Д242 А | (100) | 10,0 | — | 2 (10) | 1,0 | 10,0 | 3,0 | 130 |
Д242 Б | (100) | 5,0 | — | 2 (10) | 1,5 | 5,0 | 3,0 | 130 |
Д243 | (200) | 10,0 | — | 1,1 | 1,25 | 10,0 | 3,0 | 130 |
Д243 А | (200) | 10,0 | — | 1,1 | 1,0 | 10,0 | 3,0 | 130 |
Д243 Б | (200) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Д244 | (50) | 10,0 | — | 1,1 | 1,25 | 10,0 | 3,0 | 130 |
Д244 А | (50) | 10,0 | — | 1,1 | 1,0 | 10,0 | 3,0 | 130 |
Д244 Б | (50) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Д245 | (300) | 10,0 | — | 1,1 | 1,25 | 10,0 | 3,0 | 130 |
Д245 А | (300) | 10,0 | — | 1,1 | 1,0 | 10,0 | 3,0 | 130 |
Д245 Б | (300) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Д246 | (400) | 10,0 | — | 1,1 | 1,25 | 10,0 | 3,0 | 130 |
Д246 А | (400) | 10,0 | — | 1,1 | 1,0 | 10,0 | 3,0 | 130 |
Д246 Б | (400) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Д247 | (500) | 10,0 | — | 1,1 | 1,25 | 10,0 | 3,0 | 130 |
Д247 Б | (500) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Д248 Б | (600) | 5,0 | — | 1,1 | 1,5 | 5,0 | 3,0 | 130 |
Uобр.макс. | — | максимально-допустимое постоянное обратное напряжение диода; |
Uобр.и.макс. | — | максимально-допустимое импульсное обратное напряжение диода; |
Iпр.макс. | — | максимальный средний прямой ток за период; |
Iпр.и.макс. | — | максимальный импульсный прямой ток за период; |
Iпрг. | — | ток перегрузки выпрямительного диода; |
fмакс. | — | максимально-допустимая частота переключения диода; |
fраб. | — | рабочая частота переключения диода; |
Uпр. при Iпр. | — | постоянное прямое напряжения диода при токе Iпр; |
Iобр. | — | постоянный обратный ток диода; |
Тк.макс. | — | максимально-допустимая температура корпуса диода. |
Тп.макс. | — | максимально-допустимая температура перехода диода. |
Предельные
эксплуатационные данные:
Примечания:
1. Допускается
трехкратная перегрузка по среднему
току в течение 0,5 сек.
2. При креплении диодов к
теплоотводу усилие затяжки должно
быть не более 1,96 Н*м. Категорически
запрещается при монтаже прилагать
к изолированному выводу усилие,
превышающее 9,8 Н, что может привести
к нарушению целостности
стеклянного изолятора.
3. Теплоотводящий
радиатор может быть рассчитан из
условия, что диод является точечным
источником тепла, рассеивающим
мощность 2Uпр.,ср. * Iпр.,ср.
4. При последовательном
соединении диодов с целью
увеличения выпрямленного
напряжения рекомендуется
применять диоды одного типа и
шунтировать каждый прибор
сопротивлением 10-15 кОм на каждые 100
В амплитуды обратного напряжения.
Графики:
Для диодов: Д242, Д242 А, Д242 Б, Д243, Д243 А, Д243 Б, Д245, Д245 А, Д245 Б, Д246, Д246 А, Д246 Б, Д247, Д247 Б, Д248 Б |
Для диодов: Д242, Д242 А, Д242 Б |
Возврат к оглавлению
справочникаНа Главную страницу
www.5v.ru
Старая система обозначений
В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов.
Первый элемент буквенный, Д — диод.
Второй элемент — номер, соответствующий типу диода: 1…100 — точечные германиевые, 101…200— точечные кремниевые, 201…300 — плоскостные кремниевые, 801…900 — стабилитроны, 901…950 — варикапы, 1001…1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.
В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока ) на:
- низкочастотные НЧ (до 3 МГц),
- средней частоты СЧ (от 3 до 30 МГц),
- высокочастотные ВЧ (свыше 30 МГц),
- сверхвысокочастотные СВЧ;
По рассеиваемой мощности:
- маломощные (до 0,3 Вт),
- средней мощности (от 0,3 до 1,5 Вт),
- большой (свыше 1,5 Вт) мощности.
Начало, 1951 г.
Руководитель лаборатории полупроводников ОКБ 498, будущего Московского предприятия “СТАРТ”, Главный конструктор темы, Александр Никифорович Пужай (фото 1), заканчивает к концу 1951 г. совершенно секретную (тогда) разработку восьми типов точечных германиевых выпрямителей (выпрямительных диодов), называет их ДГ-В1, ДГ-В2 и до ДГ-В8 включительно.
Фото 1. Александр Никифорович Пужай
В технических условиях (ТУ), в целом принятых 6 мая 1952 г., они так бесхитростно и назывались: детекторы германиевые выпрямительные (фото 2, 3). Верхняя рабочая частота у них была 25 МГц.
Фото 2
Фото 3
В разработке временных ТУ на первые отечественные германиевые выпрямители принимало участие несколько организаций, подписавших документ и, планировавших их применение в своих дальнейших разработках. И только представителей НИИ-885, эти временные ТУ не устроили. Это очень важный момент в истории появления диодов Д1 и Д2. Дело в том, что НИИ-885 — ведущий институт по разработке реактивной техники, а параметры ДГ-В в части допустимого интервала температур, вибро- и влагостойкости в то время не устраивали военных разработчиков.
Нам эти диоды стали известны как ДГ-Ц1 — ДГ-Ц8 (фото 4). Изменение названия (до введения ГОСТ 5461-56) было связано с устранением возможной путаницы с назначением диодов. Дело в том, что индекс В, в те времена, означал видеодетектор. Поэтому диодам присвоили индекс Ц, каким обозначались диоды прочие. За 1952 г. завод 498 выпустил 19140 германиевых точечных диодов. При этом в отчёте за тот год сказано, что могли произвести гораздо больше, если бы поставщики не подводили с керамическими корпусами.
Фото 4
Список использованной литературы
- А.Н. Пужай.Германиевые диоды.- «Автоматика и телемеханика», 1956, Том XVII, выпуск 2.
- А. М. Бройде. Справочник по электровакуумным и полупроводниковым приборам. 1957. (Массовая радиобиблиотека. Вып. 269).
- Полупроводниковые приборы. — Всесоюзная промышленная выставка. 1957.
- Журнал «Радио». 1953 год номер 1 стр. 57
- Терещук Р.М., Домбругов Р.М., Босый Н.Д. Справочник радиолюбителя. Под общ. ред. В.В. Огиевского. — Киев, 1957.
- Журнал «Радио» 1955 год номера 1, 5, 10.
- Материалы постоянного хранения Российского государственного архива.
Об авторе: пос. Володарского журнале в «Радио» номера 2/2020, с. 10. Помещена в музей с разрешения автора 27 сентября 2020
Маркировка SMD-компонентов
Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.
Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.
Индекс цветопередачи CRI
Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.
Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.
Обозначение на схеме SMD полупроводников
Многие активные радиокомпоненты выпускаются как в выводном, так и в SMD исполнении. Например, широко применяемые импортные импульсные диоды 1N4148 имеют выводное исполнение, а их аналоги LL4148 изготавливаются в корпусе для поверхностного монтажа.
Приборы-аналоги 1N4148 и LL4148
В приведенном случае отличить исполнение диода все же можно – не по УГО, а по буквенному обозначению типа. Так бывает не всегда.
На принципиальных электрических схемах корпус приборов в большинстве случаев не указывают, поэтому СМД-радиодетали отдельного обозначения не имеют. Условные графические обозначения рассматриваемых двухвыводных элементов (диодов) позволяют определить лишь тип полупроводникового устройства, как то:
- обычный диод;
- стабилитрон;
- динистор (диодный тиристор);
- варикап;
- светодиод (LED);
- фотодиод;
- туннельный диод;
- диод Шоттки.
Обозначения различных типов двухвыводных приборов
Свои УГО имеют и некоторые виды сборок, а также специфические приборы довольно узкого применения (обращенные диоды и т.п.)
Размеры и типы корпусов SMD-компонентов
Поверхностный монтаж — технология изготовления электронных изделий на печатных платах, которую также называют ТМП (технология монтажа на поверхность), SMT (англ. surface mount technology) и SMD-технология (от англ. surface mounted device — прибор, монтируемый на поверхность).
Электронные компоненты для поверхностного монтажа («чип-компоненты» или SMD-компоненты) выпускаются различных размеров и в разных типах корпусов. Таблица типоразмеров и SMD-корпусов поможет быстро получить необходимые данные.
Размеры и типы корпусов SMD-компонентов
Двухконтактные компоненты: прямоугольные, пассивные (резисторы и конденсаторы)
Обозначение типоразмера состоит из четырех цифр. Две первые соответствуют округленно длине L в принятой системе измерения (либо метрической, либо дюймовой), а две последние — ширине W.
Типоразмер (дюймовая система) | Типоразмер (метрическая система) | Размер (мм) |
008004 | 0201 | 0.25×0.125 |
009005 | 03015 | 0.3×0.15 |
01005 | 0402 | 0.4×0.2 |
0201 | 0603 | 0.6×0.3 |
0402 | 1005 | 1.0×0.5 |
0603 | 1608 | 1.6×0.8 |
0805 | 2012 | 2.0×1.25 |
1008 | 2520 | 2.5×2.0 |
1206 | 3216 | 3.2×1.6 |
1210 | 3225 | 3.2×2.5 |
1806 | 4516 | 4.5×1.6 |
1812 | 4532 | 4.5×3.2 |
1825 | 4564 | 4.5×6.4 |
2010 | 5025 | 5.0×2.5 |
2512 | 6332 | 6.3×3.2 |
2725 | 6863 | 6.9×6.3 |
2920 | 7451 | 7.4×5.1 |
Двухконтактные компоненты: цилиндрические, пассивные (резисторы и диоды) в корпусе MELF
корпус | размеры (мм) и другие параметры |
Melf (MMB) 0207 | L = 5,8 мм, Ø = 2,2 мм, 1,0 Вт, 500 В |
MiniMelf (MMA) 0204 | L = 3,6 мм, Ø = 1,4 мм, 0,25 Вт, 200 В |
MicroMelf (MMU) 0102 | L = 2,2 мм, Ø = 1,1 мм, 0,2 Вт, 100 В |
Двухконтактные компоненты: танталовые конденсаторы
тип | размеры (мм) |
A (EIA 3216-18) | 3,2 × 1,6 × 1,6 |
B (EIA 3528-21) | 3,5 × 2,8 × 1,9 |
C (EIA 6032-28) | 6,0 × 3,2 × 2,2 |
D (EIA 7343-31) | 7,3 × 4,3 × 2,4 |
E (EIA 7343-43) | 7,3 × 4,3 × 4,1 |
Двухконтактные компоненты: диоды (англ. small outline diode, сокр. SOD)
обозначение | размеры (мм) |
SOD-323 | 1,7 × 1,25 × 0,95 |
SOD-123 | 2,68 × 1,17 × 1,60 |
Трёхконтактные компоненты: транзисторы с тремя короткими выводами (SOT)
обозначение | размеры (мм) |
SOT-23 | 3 × 1,75 × 1,3 |
SOT-223 | 6,7 × 3,7 × 1,8 |
DPAK (TO-252) | корпус (трёх- или пятиконтактные варианты), разработанный компанией Motorola для полупроводниковых устройств с большим выделением тепла |
D2PAK (TO-263) | корпус (трёх-, пяти-, шести-, семи- или восьмивыводные варианты), аналогичный DPAK, но больший по размеру (как правило габариты корпуса соответствуют габаритам TO220) |
D3PAK (TO-268) | корпус, аналогичный D2PAK, но ещё больший по размеру |
Многоконтактные компоненты: выводы в две линии по бокам
обозначение | расстояние между выводами (мм) |
ИС — с выводами малой длины (англ. small-outline integrated circuit, сокращённо SOIC) | 1,27 |
TSOP — (англ. thin small-outline package) тонкий SOIC (тоньше SOIC по высоте) | 0,5 |
SSOP — усаженый SOIC | 0,65 |
TSSOP — тонкий усаженый SOIC | 0,65 |
QSOP — SOIC четвертного размера | 0,635 |
VSOP — QSOP ещё меньшего размера | 0,4; 0,5 или 0,65 |
Многоконтактные компоненты: выводы в четыре линии по бокам
обозначение | расстояние между выводами (мм) |
PLCC, CLCC — ИС в пластиковом или керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | 1,27 |
QFP — (англ. quad flat package) — квадратные плоские корпусы ИС | разные размеры |
LQFP — низкопрофильный QFP | 1,4 мм в высотуразные размеры |
PQFP — пластиковый QFP (44 или более вывода) | разные размеры |
CQFP — керамический QFP (сходный с PQFP) | разные размеры |
TQFP — тоньше QFP | тоньше QFP |
PQFN — силовой QFP | нет выводов, площадка для радиатора |
Многоконтактные компоненты: массив выводов
обозначение | расстояние между выводами (мм) |
BGA — (англ. ball grid array) — массив шариков с квадратным или прямоугольным расположением выводов | 1,27 |
LFBGA — низкопрофильный FBGA, квадратный или прямоугольный, шарики припоя | 0,8 |
CGA — корпус с входными и выходными выводами из тугоплавкого припоя | разные размеры |
CCGA — керамический CGA | разные размеры |
μBGA — (микро-BGA) — массив шариков | расстояние между шариками менее 1 мм |
FCBGA — (англ. flip-chip ball grid array) массив шариков на подложкек подложке припаян кристалл с теплораспределителем | разные размеры |
PBGA — массив шариков, кристалл внутри пластмассового корпуса | разные размеры |
LLP — безвыводный корпус | — |
Похожие материалы:
Определение и разновидности диодов
Диод — электронная двухэлектродная деталь, проводимость которой изменяется в зависимости от полярности подающегося напряжения. Вольтамперная характеристика нелинейная, несимметричная, в отличие от терморезисторов и ламп накаливания.
Элемент состоит из деталей:
- коробка в форме вакуумной колбы из металла, керамики, стекла;
- катод для эмиссии свободных электронов;
- анод для приемки носителей;
- нагреватель — раскаляющаяся нить;
- кристалл из кремния или германия с границей (р-n переходом).
По технологическим свойствам и строению выделяют виды:
- точечные (плоскостные);
- импульсные;
- выпрямители;
- универсальные;
- в отдельной категории: тиристоры, фотодиодные и светодиодные.
Проверим ваши знания. Плюсовой вывод диода называется:
Анод
81.63%
Катод
16.83%
Электрод
1.54%
Проголосовало: 1040
Материал изготовления
При производстве применяют германий, кремний, арсенид галлия, фосфид индия, селен. Первые три вида используют чаще всего.
Особенности материалов:
- Кристаллы из германия имеют большой коэффициент проводимости при малом вольтаже, материал дорогой и редкий.
- Кремний имеет повышенное напряжение смещения, равное 0,7 В (у германия 0,3 В), он более простой в обработке и распространенный.
- Химическая комбинация мышьяка и галлия отличается высокой напряженностью электрополя пробоя, работает при повышенной мощности, приборы более радиационностойкие.
Площадь перехода
Левый слой (n) пропускает отрицательные электроны, а правый (p) характеризуется дырочной проводимостью. Ток возникает при изменении положения дырок. При касании пластов с разной проводимостью из-за диффузии электроны перемещаются в p-область, а дырки — в n-зону. В итоге граничный слой n-зоны получает положительный заряд, а аналогичный слой p-области — отрицательный.
Типы диодов по размеру перехода:
- плоскостные в форме одной пластины с двумя зонами примесной проводимости;
- точечные с малой площадью перехода для слабых токов;
- микросплавные с соединенными монокристаллами n и p типа.
Технические параметры
Рабочий температурный интервал показывает зависимость сопротивления диода от изменения температуры. Для германиевых кристаллов диапазон составляет -60° — +70°С, а кремниевых — -60° — +125°С. При снижении температуры увеличивается опасность механического повреждения, и повышается обратное и прямое сопротивление диода.
Допустимое обратное напряжение означает величину, когда p-n переход получает пробой. Показатель зависит от удельного сопротивления, ширины перехода и температуры проводника. Повышают допустимое обратное напряжение последовательным подключением диодов.
Технические характеристики
Технические параметры 1n4007 позволяют говорить о нём как о специализированном выпрямительном диоде, разработанном для сетей высокого переменного напряжения с рабочей частотой до 60 Гц. Предельно допустимые эксплуатационные значения у устройства приводятся в даташит с учётом этой особенности.
Предельные параметры
Рассмотрим основные предельно допустимые характеристики для 1n4007:
- пиковое обратное импульсное напряжение (VRRM) — до 1000 В;
- максимальный прямой выпрямленный ток (IO) — до 1 А;
- диапазон рабочих температур (TJ) от — 65 до + 175ОС.
Стоит учесть, что ток в цепи ёмкостной нагрузки должен быть на 20% ниже, чем для индуктивной и резистивной. Это одно из свойств рассматриваемого устройства, задающее режим его работы.
Электрические параметры
Диод 1n4007 характеризуется высокой перегрузочной способностью и низким падением напряжение на переходе (VF) — до 1,1 В (при IO до 1А). Так, максимальный мгновенный импульсный ток (IFSM), при длительности 8.3 сек., может достигать 30 А.
Типовая электрическая ёмкость перехода (CT) не превышает 15 пФ. Её значение определяется при частоте 1 МГц и постоянном напряжении 4 В. В теории такая скорость работы для выпрямительных диодов неприемлема, поэтому их использование в высокочастотных цепях не регламентировано.
Ток утечки не превышает 5 мкА. Но с ростом окружающей температуры (ТА), особенно при более +75 ОС, он может увеличивается до 50 мкА. Вместе с этим ухудшаются и все заявленные производителями показатели. Поэтому, для достижения эффективной работы необходимо соблюдать стандартный 30% запас по параметрам. Также желательно организовывать охлаждение, например с помощью специального токонепроводящего термокомпаунда.
Маркировка SMD диодов — справочник кодовых обозначений
Маркировка SMD диодов фирмы Hewlett Packard
# | Конфигурация | Тип корпуса | Цоколевка |
Одиночный диод | SOT23 | D1a | |
2 | Два последовательно включенных диода | SOT23 | D1i |
3 | Два диода с общим анодом | SOT23 | D1j |
4 | Два диода с общим катодом | SOT23 | D1h |
5 | Два отдельных диода | SOT143 | D6d |
7 | Кольцо из четырех диодов | SOT143 | D6c |
8 | Мост из четырех диодов | SOT143 | D6a |
9 | Перевернутая четверка диодов | SOT143 | – |
B | Одиночный диод | SOT323 | D2a |
C | Два последовательно включенных диода | SOT323 | D2b |
E | Два диода с общим анодом | SOT323 | D2c |
F | Два диода с общим катодом | SOT323 | D2d |
K | Два отдельных диода | SOT363 | D7b |
L | Три отдельных диода | SOT363 | D7f |
M | Четыре диода с общим катодом | SOT363 | D7g |
N | Четыре диода с общим анодом | SOT363 | D7h |
P | Мост из четырех диодов | SOT363 | D7i |
R | Кольцо из четырех диодов | SOT363 | D7j |
T | Диод с низкой индуктивностью | SOT363 | – |
U | Последовательно-параллельная пара диодов | SOT363 | – |
Маркировка SMD диодов в цилиндрических корпусах
Тип | 1 полоса | 2 полоса | Эквивалент |
BA682 | Красная | Нет | BA482 |
BA683 | Красная | Желтая | BA483 |
BAS32 | Черная | Нет | 1N4148 |
BAV100 | Зеленая | Черная | BAV18 |
BAV101 | Зеленая | Красная | BAV19 |
BAV102 | Зеленая | Красная | BAV20 |
BAV103 | Зеленая | Желтая | BAV21 |
BB219 | Нет | Нет | BB909 |
Маркировка диодов и диодных сборок
Наименование | Маркировка | Кол-во диодов | Обратное напр. | Прямой ток | Время рас. | Емкость диода | Корпус |
LL 4148 | … | один | 70 В | 100 мА | 4 нс | 4,0 пФ | mini-МELF |
BAS 216 | … | один | 75 В | 250 мА | 4 нс | 1,5 пф | SOD110 |
BAT254 NEW | … | один | 30 В | 200 мА | 5 нс | 10 пФ | SOD110 |
BAS 16 | JU/A6 | один | 75 В | 200 мА | 6 нс | 2,0 пФ | SOT23 |
BAS 21 | JS | один | 200 В | 200 мА | 50 нс | 5 пФ | SOT23 |
BAV 70 | JJ/A4 | 2 диода | 70 В | 250 мА | 6 нс | 1,5 пФ | SOT23 |
BAV 99 | JK, JE, A7 | 2 диода | 70 В | 250 мА | 6 нс | 1,5 пФ | SOT23 |
BAW 56 | JD, A1 | 2 диода | 70 В | 250 мА | 6 нс | 2,0 пФ | SOT23 |
BAT54S | L44 | 2 шотки | 30 В | 200 мА | 5 нс | 10 пФ | SOT23 |
BAT54C | L43 | 2 шотки | 30 В | 200 мА | 5 нс | 10 пФ | SOT23 |
BAV23S | L31 | 2 диода | 200В | 225 мА | 50 нс | 5 пФ | SOT23 |
Маркировка стабилитронов BZX84
Тип | Маркировка | Uст при 5мА min | Uст при 5мА nom | Uст при 5мА max | Max R ДИФ | Uст в диапазоне -60 … +125°С |
BZX84C2V7 | W4 | 2,4B | 2,7B | 3,1B | 85 Oм | -0,06% |
BZX84C3V0 | W5 | 2,8B | 3,0B | 3,2B | 85 Oм | -0,06% |
BZX84C3V3 | W6 | 3,1В | 3,3В | 3,5В | 85 Ом | -0,06% |
BZX84C3V9 | W8 | 3,7В | 3,9В | 4,1В | 85 Ом | -0,06% |
BZX84C4V3 | Z0 | 4,1B | 4,3B | 4,5B | 80 Ом | -0,03% |
BZX84C4V7 | Z1 | 4,4В | 4,7В | 5,0В | 80 Ом | -0,03% |
BZX84C5V1 | Z2 | 4,9B | 5,1B | 5,3B | 60 Ом | 0,03% |
BZX84C5V6 | Z3 | 5,2В | 5,6В | 6,0В | 40 Ом | 0,03% |
BZX84C6V2 | Z4 | 5,8В | 6,2В | 6,6В | 10 Ом | 0,05% |
BZX84C6V8 | Z5 | 6,4В | 6,8В | 7,2В | 15 Ом | 0,05% |
BZX84C7V5 | Z6 | 7,1В | 7,5В | 7,9В | 15 Ом | 0,05% |
BZX84C8V2 | Z7 | 7,7В | 8,2В | 8,7В | 15 Ом | 0,06% |
BZX84C9V1 | Z8 | 8,8В | 9,1В | 9,5В | 20 Ом | 0,05% |
BZX84C10 | Z9 | 9,4В | 10,0В | 10,6В | 20 Ом | 0,07% |
BZX84C12 | Y2 | 11,4В | 12,0В | 12,7В | 25 Ом | 0,07% |
BZX84C15 | Y4 | 13,8В | 15,0В | 15,6В | 30 Ом | 0,08% |
BZX84C18 | Y6 | 16,8В | 18,0В | 19,1В | 45 Ом | 0,08% |
BZX84C20 | Y8 | 17,8В | 20,0В | 21,0В | 45 Ом | 0,08% |
Маркировка стабилитронов BZT52
Тип | Маркировка | Uст при 5мА min | Uст при 5мА nom | Uст при 5мА max | Max R ДИФ | Uст в диапазоне -60 … +125°С |
BZT52-C3V3S | W4 | 3,1B | 3,3B | 3,5B | 95 Oм | -0,055% |
BZT52-C3V9S | W6 | 3,7B | 3,9B | 4,1B | 95 Oм | -0,050% |
BZT52-C4V3S | W7 | 4,0В | 4,3В | 4,6В | 95 Ом | -0,035% |
BZT52-C4V7S | W8 | 4,4В | 4,7В | 5,0В | 75 Ом | -0,015% |
BZT52-C5V1S | W9 | 4,8B | 5,1B | 5,4B | 60 Ом | -0,005% |
BZT52-C6V8S | WB | 6,4B | 6,8B | 7,2B | 8 Ом | 0,045% |
Как проверить SMD компоненты
Аналоги
В таблице приведены зарубежные и отечественные модели диодов максимально близкие по характеристикам к диоду Д9.
Тип | Vобр макс., В | Iпр макс., мА | Iпр имп макс., мА | Т, °C | |||
Оригинал | |||||||
Д9 | Мин. | Макс. | Мин. | Макс. | Мин. | Макс. | -60…+70°C |
10 | 100 | 15 | 40 | 48 | 125 | ||
Зарубежные аналоги | |||||||
1N34A | 20 | 200 | 500 | -55…+75°C | |||
1N87 | 25-30 | 30-50 | — | — | |||
AA137 | 40 | 500 | — | -60…+85°C | |||
Отечественный аналог | |||||||
Д2 | Мин. | Макс. | Мин. | Макс. | Мин. | Макс. | -60…+70°C |
10 | 150 | 8 | 25 | 48 | — |
Данные диоды имеют немного аналогов, но за счет широкого модельного ряда, который насчитывает 10 модификаций, имеется возможность подобрать замену конкретному диоду, используя другую модель.
Примечание: данные в таблице взяты из даташип компании-производителя.
Как отличить стабилитрон от диода
На самом деле, вопрос, вынесенный в заголовок не совсем корректен. Стабилитрон (диод Зенера или просто «зенер») является разновидностью диода – прибора с односторонней проводимостью. В той же мере обычный диод может выполнять функции стабилитрона, работая на обратной ветви вольт-амперной характеристики в качестве стабилизаторов напряжения или защитных элементов.
Специфика стабилитрона в том, что его параметры работы при обратном смещении (напряжение лавинного пробоя и динамическое сопротивление) нормируются. Это позволяет выбрать прибор для работы в конкретной схеме без замеров, исключительно по справочным данным. Визуально отличить «зенер» от обычного диода получается не всегда – большинство корпусов используется для производства обоих типов полупроводниковых элементов.
Наиболее распространенные корпуса стабилитронов в исполнении SMD
Стабилитрон отечественного производства КС156А
Аналоги
Для 1N4007 (in4007) довольно трудно найти аналог. Из-за своей дешевизны и доступности он вытеснил с рынка почти всех своих конкурентов. В любом магазине радиотоваров его цена от разных производителей не превышает 5-6 рублей. Вместе с тем, в качестве замены можно рекомендовать более совершенные: EM513, EM518
Так же стоит обратить внимание на диоды той же серии со схожими параметрами, но с более низким рабочим напряжением: 1N4006, 1N4005
Российский производитель ООО «Саранский завод точный приборов» выпускает отечественные аналоги: КД243Ж, КД258Д(КД-29А). Они конечно не соответствуют бессвинцовым стандартам, но по характеристикам очень схожи. Стоит заметить, что у КД258Д сравнительно высокая стоимость, поэтому целесообразность его использования в качестве альтернативы очень сомнительна.
Новое место работы
Во исполнение приказа объединённого Министерства электростанций и электропромышленности от 9 июня 1953 г. № 60сс, на базе бывшего СКБ-627, бывшей лаборатории полупроводников СКБ-498 и части бывшей лаборатории полупроводниковых приборов НИИ-160 создан Государственный НИИ полупроводниковых приборов и магнитных материалов. Новый НИИ-35 разместили в корпусе, предназначенном для опытного завода СКБ-627.
А.Н. Пужай, став сотрудником НИИ-35, на вновь образованном предприятии, продолжает совместную работу с СКБ-498 по улучшению параметров диодов, воисполнение требований ракетчиков, и в конце 1953 г. заканчивает НИОКР на тему увеличения влагостойкости диодов серии ДГ-Ц. В этот же период, к концу 1953 г. в НИИ-35 Александром Никифоровичем закончена разработка плоскостных германиевых диодов с обратным напряжением до 150 В и прямым током 1 А по теме “Вентиль”— будущие диоды Д302, Д303 (фото 5).
Фото 5
К слову сказать, на 1 января 1954 г. в НИИ-35 трудилось 540 человек, в том числе, в отделе физики полупроводников — 18 сотрудников, в отделе полупроводниковых диодов — 42 человека, технологическом отделе — 32.
Завод 498 в 1954 г. выпустил 700000 точечных ДГ-Ц, а СКБ-498 выполнило “»Проект производственных работ № 17”(ППР-17). Результатом стала смонтированная механизированная технологическая линия, состоящая из 15 типов полуавтоматов и устройств различного назначения, предназначенных для производства диодов типа ДГЦ-С, в полностью стеклянном оформлении. Нам эти приборы стали известны как диоды Д1 (фото 6).
Фото 6
Завершив совместную работу по совершенствованию технических параметров диодов две дружественные организации пошли каждая своим путём. В принципе, это нормальная практика тех лет — параллельная работа по одной тематике, поскольку немного разные решения в технологии производства приводили к конкуренции и неизбежному улучшению конечного продукта.
В это же самое время в НИИ-35, неутомимый А.Н. Пужай по теме “Стекло”создаёт свой вариант диодов, позволяющих выдерживать длительное воздействие влаги без изменения электрических параметров и пригодных для использования военными в своих разработках. По сути, конструкция диода, технологически повторяет, с некоторыми доработками, первую разработку Александра Никифоровича — диод ДГ-В, в котором керамический корпус заменён на стеклянным с похожими, полностью металлическими вводами и держателями электродов и кристалла германия и, в последствии, названного диодом Д2 (фото 7).
Фото 7
Параллельно коллектив под его руководством, успешно сдаёт государственной комиссии разработку германиевого выпрямительного элемента (работа называлась ППР-11) на обратное напряжение более 150 В и ток 300 мА, с превышением технического задания, включая опытную линию по производству диодов, известных как ДГ-Ц21 — ДГ-Ц24 (фото 8). В 1954 г. на опытном заводе НИИ-35 было изготовлено 7000 шт. таких диодов.
Фото 8
Таким образом, первые германиевые плоскостные выпрямительные диоды ДГ-Ц21 — ДГ-Ц24 созданы А.Н. Пужай, сотрудником НИИ-35 в отделе № 2, начальником которого до конца 1955 г. он и был. По теме “Даль”осенью 1954 г. была полностью закончена и предъявлена на государственные испытания разработка высоковольтных модификаций этих диодов — ДГ-Ц25 и ДГ-Ц26.
Основные параметры устройств
Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:
- Наибольшее значение среднего прямого тока,
- Наибольшее допустимое значение обратного напряжения,
- Максимально допустимая частота разности потенциалов при заданном прямом токе.
Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:
- Приборы малой мощности. У них значение прямого тока до 300 мА,
- Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А,
- Силовые (большой мощности). Значение более 10 А.
Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:
- Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт,
- Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.
Обозначение и цветовая маркировка стабилитронов
Самый удобный вариант – когда маркировка стеклянных стабилитронов выполнена в виде цифры, означающей напряжение стабилизации. Оценить приблизительный максимальный рабочий ток можно по габаритам, и этих двух параметров хватит для многих случаев. Если потребуется знать более глубокие характеристики (динамическое сопротивление и т.п.), придется прибегнуть к помощи справочников.
Отечественные выводные металлостеклянные стабилитроны, как упоминалось выше, маркируются цветными кольцами.
Тип прибора | Метка в районе анода | Метка в районе катода |
---|---|---|
КС133А | голубая | белая |
2С133А | белая | черная |
КС139А | зеленая | белая |
3С139А | зеленая | черная |
КС147А | серая (синяя) | белая |
2С147А | — | черная |
КС156А | оранжевая | белая |
2С156А | оранжевая | черная |
КС168А | красная | белая |
2С168А | красная | черная |
КС175Ж | белая | — |
КС182Ж | желтая | — |
КС191Ж | красная | — |
Импортные SMD-стабилитроны также могут иметь метку в районе катода. К сожалению, стандарта на цветовую маркировку нет. В большинстве случаев полоса на корпусе белая. Если позволяют размеры, производитель может нанести на корпус напряжение стабилизации в вольтах (в лучшем случае). Встречается и символьная маркировка типов «зенеров», но она может отличаться от производителя к производителю. Для стабилитронов производства Mouser серий BZX884S и BZT52 в пластмассовом корпусе символьные обозначения типов приведены в таблице.
Тип прибора | Uстабилизации, В | Обозначение |
BZX884S-XXX (корпус SOD882) | ||
B2V4 2A | 2,4 | 2A |
B15 | 15 | 2U |
C2V4 | 2,4 | 4K |
C15 | 15 | 4C |
B2V7 | 2,7 | 2B |
B16 | 16 | 2V |
C2V7 | 2,7 | 4L |
C16 | 16 | 4D |
B3V0 | 3,0 | 2C |
B18 | 18 | 2W |
C3V0 | 3,0 | 4R |
C18 | 18 | 4E |
B3V3 | 3,3 | 2D |
B20 | 2X | |
C3V3 | 3,3 | 4S |
C20 | 20 | 4F |
B3V6 | 3,6 | 2E |
B22 | 22 | 2Y |
C3V6 | 3,6 | 4T |
C22 | 22 | 4G |
B3V9 | 3,9 | 2F |
B24 | 24 | 2Z |
C3V9 | 3,9 | 4U |
C24 | 24 | 4H |
B4V3 | 4,3 | 2G |
B27 | 27 | 3A |
C4V3 | 4,3 | 4U |
C27 | 27 | 4J |
B4V7 | 4,7 | 2H |
B30 | 30 | 3B |
C4V7 | 4,7 | 4Y |
C30 | 30 | 4M |
B5V1 | 5,1 | 2J |
B33 | 33 | 3C |
C5V1 | 5,1 | 5B |
C33 | 33 | 4N |
B5V6 | 5,6 | 2K |
B36 | 36 | 3D |
C5V6 | 5,6 | 5C |
C36 | 36 | 4P |
B6V2 | 6,2 | 2L |
B39 | 39 | 3E |
C6V2 | 6,2 | 5F |
C39 | 39 | 4Q |
B6V8 | 6,8 | N3 |
B43 | 43 | 3F |
C6V8 | 6,8 | 5G |
C43 | 43 | 4V |
B7V5 | 7,5 | 2M |
B47 | 47 | 3G |
C7V5 | 7,5 | 5J |
C47 | 47 | 4W |
B8V2 | 8,2 | 2N |
B51 | 51 | 3H |
C8V2 | 8,2 | 5K |
BZT52-XXX (корпус SOD-123) | ||
C2V4 | 2,4 | W1 |
C6V2 | 6,2 | WB |
C2V7 | 2,7 | W2 |
C3V0 | 3,0 | W3 |
C3V3 | 3,3 | W4 |
C3V6 | 3,6 | W5 |
C3V9 | 3,9 | W6 |
C4V3 | 4,6 | W7 |
C4V7 | 4,7 | W8 |
C5V1 | 5,1 | W9 |
C5V6 | 5,6 | WA |
У других производителей коды могут совпадать с приведенными, а могут не совпадать. Единого стандарта, как и для обычных диодов, не существует.